Abstract Algebra. Math 6320. Bertram/Utah 2022-23. Introducing Galois Theory

Let K be a field.
Definition. (a) A polynomial $f(x) \in K[x]$ is separable if it has no repeated roots as a polynomial in $L[x]$ for any extension $K \subset L$. .
(b) An element $\alpha \in L$ of an extension $K \subset L$ is separable over K if it is either transcendental for the irreducible $f(x) \in K[x]$ with $f(\alpha)=0$ is separable.
(c) An extension $K \subset L$ is separable if each $\alpha \in L$ is separable over K.
(d) A field K is perfect if every field extension of K is separable.

Examples. If $f(x) \in K[x]$ has a repeated root α in any extension $K \subset L$, then

$$
(x-\alpha) \text { is a common divisor of } f(x) \text { and } f^{\prime}(x) \text { in } L[x]
$$

But the gcd belongs to $K[x]$ (by Euclid's algorithm) so if $f(x)$ has a repeated root in some field extension then either $f^{\prime}(x)=0$ (identically) or else $f(x)$ is reducible, with a factor dividing $f^{\prime}(x)$. In particular, every irreducible polynomial with coefficients in a field of characteristic zero is separable. Thus all such fields are perfect.

Finite fields are also perfect although they support (reducible) polynomials with $f^{\prime}(x)=0$. If F is a finite field and $\alpha \in L$ for an extension $F \subset L$, then either $K(\alpha)$ is infinite, in which case α is transcendental over K, or else $K(\alpha) \subset \mathbb{F}_{q}$ for some field with q elements. But the elements of \mathbb{F}_{q} are precisely the (distinct!) q roots of $x^{q}-x$, so the irreducible polynomial $f(x)$ with $f(\alpha)=0$ must be a factor of $x^{q}-x$, and as such it has distinct roots (and its derivative is not zero).

On the other hand, the field $\mathbb{F}_{p}(t)$ is not perfect since the polynomial:

$$
f(x)=x^{p}-t \in \mathbb{F}_{p}(t)[x]
$$

is irreducible and a p th power, when thought of as a polynomial in $\mathbb{F}_{p}\left(t^{\frac{1}{p}}\right)[x]$.
Let $f(x) \in K[x]$.
Definition. A splitting field F / K for $f(x)$ is a splitting extension that is minimal, in the sense that there is no intermediate splitting extension $K \subset E \subset F$.

Note: There is a unique splitting field $F:=K\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ inside each splitting extension L, namely the smallest subextension that contains all the roots $\alpha_{i} \in L$.

By induction and Proposition 1 from the previous section,

$$
K\left[x_{1}, \ldots, x_{r}\right] \rightarrow K\left(\alpha_{1}, \ldots, \alpha_{r}\right) \subset L
$$

is a surjection from the polynomial ring onto the splitting field.
Definition. The Galois group of a splitting field F / K (for some $f(x) \in K[x]$) is:

$$
\operatorname{Gal}(F / K)=\operatorname{Aut}_{K}(F)
$$

the group of automorphisms of the field F that restrict to the identity on K.
We want to prove that this group is determined (up to isomorphism) by the polynomial $f(x)$ itself, and not just by the splitting field. Instead of comparing two splitting fields F_{1} / K and F_{2} / K for the same field K, it useful to think of them as splitting fields over isomorphic but distinct fields K_{1} and K_{2}.

Proposition 1. Let $\tau: K_{1} \rightarrow K_{2}$ be an isomorphism of fields and let

$$
\widetilde{\tau}: K_{1}[x] \rightarrow K_{2}[x] \text { be defined by } \widetilde{\tau}\left(\sum a_{i} x^{i}\right)=\sum \tau\left(a_{i}\right) x^{i}
$$

Fix $f(x) \in K_{1}[x]$ and let F_{1} / K_{1} and F_{2} / K_{2} be splitting fields for f and $\widetilde{\tau}(f)$. Then:
(a) There is an isomorphism $\sigma: F_{1} \rightarrow F_{2}$ such that $\left.\sigma\right|_{K_{1}}=\tau$.
(b) If $f(x)$ is separable, there are $\left[F_{1}: K_{1}\right]$ isomorphisms in (a). In particular:

$$
|\operatorname{Gal}(F / K)|=[F: K]
$$

for every splitting field of a separable polynomial $f(x) \in K[x]$.
(c) The Galois groups of the various splitting fields of an arbitrary $f(x) \in K[x]$ are all isomorphic to one another.

Proof. If $f(x)$ splits in K_{1} then $\widetilde{\tau}(f)(x)$ splits in K_{2}, and $F_{1}=K_{1}$ and $F_{2}=K_{2}$ and there is nothing to prove in (a) or (b). Otherwise choose an irreducible factor $g(x)$ of $f(x)$ of degree >1 and a root $\alpha_{1} \in F_{1}$ of $g(x)$.

For each root $\beta \in F_{2}$ of $\widetilde{\tau}(g)(x)$, we obtain an extension of τ to:

$$
\tau_{\beta}: K_{1}\left(\alpha_{1}\right) \rightarrow K_{2}(\beta) \subset F_{2} \text { defined by } \tau_{\beta}\left(\alpha_{1}\right)=\beta
$$

an isomorphism of fields $K_{1}\left(\alpha_{1}\right)$ and $K(\beta)$. If $f_{1}(x)$ is separable, then there are:

$$
\left[K_{1}\left(\alpha_{1}\right): K_{1}\right]=\operatorname{deg}(g)
$$

such maps to F_{2} corresponding to the distinct roots of $\widetilde{\tau}(g)$.
For each choice of β (giving rise to τ_{β}), we repeat the process with K_{1} replaced with $K_{1}\left(\alpha_{1}\right)$ and K_{2} replaced with $K_{2}(\beta)$ (and τ replaced with τ_{β}). Since

$$
F_{1}=K_{1}\left(\alpha_{1}, \ldots ., \alpha_{r}\right)
$$

for distinct roots α_{i} of a series of factors $g_{i}(x)$ with $\alpha_{i+1} \notin K\left(\alpha_{1}, \ldots, \alpha_{i}\right)$, we get (a) and (b) after r iterations, the point in (b) being that the isomorphism $\sigma: K\left(\alpha_{1}, \ldots, \alpha_{r}\right) \rightarrow F_{2}$ is uniquely determined by the images of $\alpha_{1}, \ldots, \alpha_{r}$.

As for (c), let F_{1} / K and F_{2} / K be two splitting fields for $f(x) \in K[x]$. Then the isomorphism σ guaranteed by (a) (and its inverse) may be used to define the isomorphism $\operatorname{Gal}\left(F_{1} / K\right)$ to $\operatorname{Gal}\left(F_{2} / K\right)$ by conjugation. Namely,

$$
g \mapsto \sigma \circ g \circ \sigma^{-1}
$$

defines the isomorphism of Galois groups with inverse defined by σ^{-1}.

Finite Fields

Corollary 1. Two finite fields with the same number of elements are isomorphic.
Proof. Let F be a field with q elements. By virtue of the fact that F^{*} is cyclic (of order $q-1$) it follows that F / \mathbb{F}_{p} is a splitting field for $x^{q}-x$, which is a separable polynomial over the (fixed!) field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$. Now apply the Proposition.

Let \mathbb{F}_{q} be "the" finite field with $q=p^{d}$ elements.
Corollary 2. The Galois group $\operatorname{Gal}\left(\mathbb{F}_{q} / \mathbb{F}_{p}\right)$ is cyclic of order d, generated by:

$$
\phi: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q} \text { defined by } \phi(\alpha)=\alpha^{p}
$$

This is the Frobenius element of the Galois group.

Proof. The Frobenius element is an automorphism of \mathbb{F}_{q} fixing \mathbb{F}_{q} since:

$$
\phi(a)=a \text { for } a \in \mathbb{F}_{p} \text { and } \phi(\alpha \beta)=\phi(\alpha) \phi(\beta) \text { and } \phi(\alpha+\beta)=\phi(\alpha)+\phi(\beta)
$$

the last being the surprising result, following from the fact that:

$$
(\alpha+\beta)^{p}=\alpha^{p}+\beta^{p} \text { in any field of characteristic } p
$$

This element is not the identity (unless $d=1$), and indeed,

$$
\operatorname{Gal}\left(\mathbb{F}_{q} / \mathbb{F}_{p}\right)=\left\{\phi, \cdots, \phi^{d-1}, \phi^{d}=\operatorname{id}_{\mathbb{F}_{q}}\right\}=C_{d}
$$

with $\phi^{d}(\alpha)=\alpha^{p^{d}}=\alpha^{q}=\alpha$ for all $\alpha \in \mathbb{F}_{q}$ giving $\phi^{d}=\mathrm{id}$.
Notice that if e divides d, then:

$$
\mathbb{F}_{p^{e}}=\left\{\alpha \in \mathbb{F}_{q} \mid \phi^{e}(\alpha)=\alpha^{p^{e}}=\alpha\right\} \subset \mathbb{F}_{q}
$$

is the "fixed subfield" of the subgroup of the Galois group generated by ϕ^{e}.
This gives us a correspondence between the subgroups of the Galois group C_{d} and the subfields of \mathbb{F}_{q}. Moreover, notice that all the subgroups are normal and all the subfields of \mathbb{F}_{q} are splitting fields of some polynomial in $\mathbb{F}_{p}[x]$. This is our first encounter with Galois Theory.

Cyclotomic Fields

Let $\omega_{n}=e^{2 \pi i / n}$. Then $\mathbb{Q}\left(\omega_{n}\right) / \mathbb{Q}$ is a splitting field for $x^{n}-1$, and so

$$
\operatorname{Gal}\left(\mathbb{Q}\left(\omega_{n}\right) / \mathbb{Q}\right)=(\mathbb{Z} / n \mathbb{Z})^{*} \text { via } \omega_{n} \mapsto \omega_{n}^{d}
$$

is once again an abelian group (though not necessarily cyclic), and then:
Corollary 3. The irreducible polynomial $\Phi_{n}(x) \in \mathbb{Q}[x]$ for ω_{n} has degree $\phi(n)$.
This is the nth cyclotomic polynomial.
Note. This $\phi(n)$ (surely the most overused greek letter in math) is the Euler totient, which is the size of the Galois group, hence also equal to $\left[\mathbb{Q}\left(\omega_{n}\right): \mathbb{Q}\right]=\operatorname{deg}\left(\Phi_{n}(x)\right)$.
Examples. For all primes p, the cyclotomic polynomial is: $\Phi_{p}(x)=\left(x^{p}-1\right) /(x-1)$

$$
\begin{aligned}
& \Phi_{4}(x)=x^{2}+1 \\
& \Phi_{6}(x)=x^{2}-x+1 \\
& \Phi_{8}(x)=x^{4}+1 \\
& \Phi_{9}(x)=x^{6}+x^{3}+1 \\
& \Phi_{12}(x)=x^{4}-x^{2}+1
\end{aligned}
$$

Remark. The product formula $\prod_{d \mid n} \Phi_{d}(x)=x^{n}-1$ for cyclotomic polynomials reprises the sum (taking degrees):

$$
\sum_{d \mid n} \phi(d)=n \text { that we saw earlier }
$$

Let's explore some of these splitting fields $\mathbb{Q}\left(\omega_{n}\right)$ in more detail:

- $(\mathbb{Z} / 8 \mathbb{Z})^{*}=\{1,3,5,7\}$ is isomorphic to K_{4} and has three subgroups of order 2 . Not coincidentally, there are three intermediate subfields:

$$
\mathbb{Q} \subset E_{i} \subset \mathbb{Q}(\omega)=\mathbb{Q}(\sqrt{i}), \text { namely }
$$

$E_{1}=\mathbb{Q}(i)=\mathbb{Q}\left(\omega^{2}\right), E_{2}=\mathbb{Q}(\sqrt{2})=\mathbb{Q}\left(\omega+\omega^{-1}\right)$ and $E_{3}=\mathbb{Q}(\sqrt{-2})=\mathbb{Q}\left(\omega-\omega^{-1}\right)$
which are fixed subfields for the elements $\omega \mapsto \omega^{5}, \omega^{7}$ and ω^{3} respectively!

- $(\mathbb{Z} / 5 \mathbb{Z})^{*}=C_{4}$, on the other hand, has only has one subgroup, and

$$
\mathbb{Q}(\sqrt{5})=\mathbb{Q}\left(\omega+\omega^{-1}\right) \subset \mathbb{Q}(\omega)
$$

is the fixed field for $\omega \mapsto \omega^{4}$. The polynomial relation: $\left(\omega+\omega^{4}\right)^{2}+\left(\omega+\omega^{4}\right)-1=0$ gives us another computation of

$$
\omega+\omega^{-1}=2 \cos (2 \pi / 5)=\frac{-1+\sqrt{5}}{2}
$$

- $(\mathbb{Z} / 7 \mathbb{Z})^{*}=C_{6}$ has two subgroups C_{2} and C_{3}, and

$$
E_{1}=\mathbb{Q}\left(\omega+\omega^{-1}\right) \text { and } E_{2}=\mathbb{Q}\left(\omega+\omega^{2}+\omega^{4}\right)
$$

are the subfields fixed by $\omega \mapsto \omega^{6}$ and $\omega \mapsto \omega^{2}$, respectively. Note that $\omega+\omega^{2}+\omega^{4}$ is a root of $x^{2}+x+2=0$, giving us:

$$
\omega+\omega^{2}+\omega^{4}=\frac{-1+\sqrt{-7}}{2} \text { and } E_{2}=\mathbb{Q}(\sqrt{-7})
$$

while $\omega+\omega^{6}$ is a root of $x^{3}+x^{2}-2 x-1=0$, so this irreducible cubic polynomial relation satisfied by $2 \cos (2 \pi / 7)$ shows that $2 \cos (2 \pi / 7)$ is not constructible.

We have a final corollary that is half of the cornerstone of Galois Theory.
Corollary 4. Fix a splitting field F / K for a polynomial $f(x) \subset K[x]$. Then:
(a) F / E is a splitting field of $f(x)$ for each intermediate field $K \subset E \subset F$, and:

$$
\operatorname{Gal}(F / E) \subset \operatorname{Gal}(F / K)
$$

is a subgroup whose right cosets are in bijection with the set $\operatorname{Hom}_{K}(E, F)$.
(b) If E / K is a splitting field for $g(x) \in K[x]$, then each element of the Galois group $\operatorname{Gal}(F / K)$ fixes the subfield $E \subset F$, giving rise to an exact sequence:

$$
1 \rightarrow \operatorname{Gal}(F / E) \rightarrow \operatorname{Gal}(F / K) \rightarrow \operatorname{Gal}(E / K) \rightarrow 1
$$

of Galois groups. In particular, $\operatorname{Gal}(F / E) \subset \operatorname{Gal}(F / K)$ is a normal subgroup.
Proof. It is clear that F / E is a splitting field for $f(x)$. The inclusion of Galois groups in (a) (and (b)) follows right away from the definition of the Galois group. After all, an automorphism of F fixing E must also fix K. Suppose $\iota: E \rightarrow F$ is a field embedding that fixes K. Let $\tau: E \rightarrow \iota(E)$ be the isomorphism. Then by Proposition 1 (a), τ lifts to an element $\sigma \in \operatorname{Gal}(F / K)$. Moreover, the cosets

$$
\sigma \circ \operatorname{Gal}(F / E) \subset \operatorname{Gal}(F / K) \text { are all the lifts of } \tau
$$

This gives (a).
When E / K is a splitting field of $g(x) \in K[x]$ in (b), then E is mapped to E by every element of $\operatorname{Gal}(F / K)$ since the roots of $g(x)$ map to roots of $g(x)$, and the resulting group homomorphism $\operatorname{Gal}(F / K) \rightarrow \operatorname{Gal}(E / K)$ is surjective by (a).

nth Roots

Recall that every positive integer $b \in \mathbb{Z}$ has a full set of n complex nth roots. That is,

$$
\mathbb{Q} \subset \mathbb{C} \text { is a splitting extension for the polynomial } f(x)=x^{n}-b
$$

and we let F / \mathbb{Q} be the splitting field of \mathbb{Q} for $x^{n}-b$ contained in \mathbb{C}. We seek to understand the Galois group of this splitting field.

Notice that $\omega_{n} \in F$ is a ratio of nth roots of b, and so:

$$
\mathbb{Q}\left(\omega_{n}\right) \subset F, \text { and indeed } F=\mathbb{Q}\left(\omega_{n}, \sqrt[n]{b}\right)
$$

where $\sqrt[n]{b}$ is the positive real nth root of b (this is the only reason we chose $b>0$). This might seem to say everything we need to know about the splitting field F / \mathbb{Q}. But there's actually more work to be done. Since $\mathbb{Q}\left(\omega_{n}\right) / \mathbb{Q}$ is also a splitting field (for the cyclotomic polynomial), we get an exact sequence:

$$
(*) \quad 1 \rightarrow \operatorname{Gal}\left(F / \mathbb{Q}\left(\omega_{n}\right)\right) \rightarrow \operatorname{Gal}(F / \mathbb{Q}) \rightarrow \operatorname{Gal}\left(\mathbb{Q}\left(\omega_{n}\right) / \mathbb{Q}\right) \rightarrow 1
$$

of Galois groups by Corollary 4. Moreover, this sequence is right-split via:

$$
h:\left|(\mathbb{Z} / n \mathbb{Z})^{*}\right|=\operatorname{Gal}\left(\mathbb{Q}\left(\omega_{n}\right) / \mathbb{Q}\right) \rightarrow \operatorname{Gal}(F / \mathbb{Q}) ; h_{d}(\omega)=\omega^{d} \text { and } h_{d}(\sqrt[n]{b})=\sqrt[n]{b}
$$

which only leaves us the problem of figuring out the Galois group of the splitting field $F / \mathbb{Q}\left(\omega_{n}\right)=\mathbb{Q}\left(\omega_{n}\right)(\sqrt[n]{b}) / \mathbb{Q}\left(\omega_{n}\right)$ (and the details of the semidirect product).

This is contingent, of course, on the values of n and b. For example, if b is already a perfect nth power as an integer, then all the nth roots of b are already in $\mathbb{Q}\left(\omega_{n}\right)$, and h is an isomorphism. At the other extreme:

Case One. If $x^{n}-b$ remains irreducible in $\mathbb{Q}\left(\omega_{n}\right)[x]$, there must be an element $g \in \operatorname{Gal}\left(F / \mathbb{Q}\left(\omega_{n}\right)\right)$ with the property that

$$
g(\sqrt[n]{b})=(\sqrt[n]{b}) \cdot \omega_{n}
$$

from which it follows (by the invariance of $\mathbb{Q}\left(\omega_{n}\right)$) that the effect of g on all roots is to rotate by an angle of $2 \pi / n$. But

$$
\left|\operatorname{Gal}\left(F / \mathbb{Q}\left(\omega_{n}\right)\right)\right|=\left[F: \mathbb{Q}\left(\omega_{n}\right)\right]=n
$$

from the Proposition, and so the Galois group is the cyclic group, generated by g. Thus, the exact sequence $(*)$ is:

$$
1 \rightarrow C_{n} \rightarrow \operatorname{Gal}(F / \mathbb{Q}) \rightarrow \operatorname{Aut}\left(C_{n}\right) \rightarrow 1
$$

and the semi-direct product is "canonical" via $\phi=\mathrm{id}: \operatorname{Aut}\left(C_{n}\right) \rightarrow \operatorname{Aut}\left(C_{n}\right)$ since:

$$
h_{d} \circ g \circ h_{d}^{-1}=g^{d} \text { is rotation of the roots by } 2 \pi d / n
$$

When $n=3$, this gives S_{3}, and when $n=5$, it is the "mystery" group of order 20 .
Case Two. $x^{n}-b$ is irreducible in $\mathbb{Q}[x]$ (but might be reducible in $\mathbb{Q}\left(\omega_{n}\right)[x]$). Then the n cosets of the inclusion of Galois groups:

$$
\operatorname{Gal}(F / \mathbb{Q}(\sqrt[n]{b})) \subset \operatorname{Gal}(F / \mathbb{Q})
$$

from Corollary 4 correspond to the n different embeddings $\mathbb{Q}(\sqrt[n]{b}) \hookrightarrow F$.
In particular, $|\operatorname{Gal}(F / \mathbb{Q})|$ is divisible by n. When $n=p$, this is enough to conclude that $x^{p}-b$ is also irreducible in $\mathbb{Q}\left(\omega_{n}\right)[x]$, and so we are in case one. But when n is not a prime, or more precisely, when n and $\phi(n)$ are not relatively prime, it is possible for $x^{n}-b$ to factor in $\mathbb{Q}\left(\omega_{n}\right)[x]$, in which case we can only conclude:

$$
(\dagger) 1 \rightarrow G \rightarrow \operatorname{Gal}(F / \mathbb{Q}) \rightarrow \operatorname{Aut}\left(C_{n}\right) \rightarrow 1
$$

for a group G that is the Galois group of the splitting field of an irreducible factor $g(x)$ of $f(x)=x^{n}-b \in \mathbb{Q}\left(\omega_{n}\right)[x]$, and such that:

$$
n \text { divides }|\operatorname{Gal}(F / \mathbb{Q})|=|G| \cdot \phi(n)=\operatorname{deg}(g(x)) \cdot \phi(n)
$$

Example. Consider the irreducible polynomial $x^{8}-2 \in \mathbb{Q}[x]$. We claim that:

$$
x^{8}-2 \text { is reducible in } \mathbb{Q}\left(\omega_{8}\right)[x]
$$

We can see this from the subfield $\mathbb{Q}(\sqrt{2})=\mathbb{Q}\left(\omega_{8}+\omega_{8}^{-1}\right)$, showing that indeed:

$$
x^{8}-2=\left(x^{4}+\sqrt{2}\right)\left(x^{4}-\sqrt{2}\right) \in \mathbb{Q}\left(\omega_{8}\right)[x]
$$

and ω_{8} is a root of the first of these polynomials. But could it factor any further? One way to see it doesn't is to apply Eisenstein's criterion with the Euclidean domain $D=\mathbb{Z}[\sqrt{2}]$, in which $\sqrt{2}$ is an irreducible element.

Thus the Galois group has order 16, and reasoning as in Case One gives us:

$$
g(\sqrt[8]{2})=(\sqrt[8]{2}) \cdot \omega_{8}^{2}=(\sqrt[8]{2}) \cdot i
$$

in $G \subset \operatorname{Gal}(F / \mathbb{Q})$, showing that $G=\operatorname{Gal}\left(F / \mathbb{Q}\left(\omega_{8}\right)\right)$ is the cyclic group C_{4}.
One could now analyze the semi-direct product in (\dagger) to get the Galois group. We can also pass to the sub-splitting field $\mathbb{Q}(i) \subset F$, and use Corollary 4 to obtain:

$$
(* *) 1 \rightarrow \operatorname{Gal}(F / \mathbb{Q}(i)) \rightarrow \operatorname{Gal}(F / \mathbb{Q}) \rightarrow \operatorname{Gal}(\mathbb{Q}(i) / \mathbb{Q}) \rightarrow 1
$$

This is right-split by complex conjugation $c \in \operatorname{Gal}(F / \mathbb{Q})$, and in addition,

$$
|\operatorname{Gal}(F / \mathbb{Q}(i))|=16 / 2=8
$$

so $x^{8}-2$ is irreducible in $\mathbb{Q}(i)[x]$. This Galois group is also cyclic, but is not generated by the rotation by ω_{8} (since that would be an element of G). Instead, it "has to be" a lift of the element $\omega \mapsto \omega^{5}$ from the Galois group of $\mathbb{Q}\left(\omega_{8}\right) / \mathbb{Q}(i)$. I.e.

$$
\gamma(\sqrt[8]{2})=(\sqrt[8]{2}) \cdot \omega \text { and } \gamma(\omega)=\omega^{5}(=-\omega)
$$

Then

$$
c \circ \gamma \circ c^{-1}=\gamma^{3}
$$

as one is invited to check, and in particular, $\operatorname{Gal}(F / \mathbb{Q})$ is not dihedral group!

Miscellaneous

Let F / K be a splitting field for a separable polynomial $f(x) \in K[x]$ of degree d. Then:

Proposition 2. (a) The Galois group of F / K is a subgroup of S_{d}.
(b) If p is prime and $f(x)$ is irreducible, then $\operatorname{Gal}(F / K)$ contains a p-cycle.

Proof. The Galois group takes roots of $f(x)$ to roots of $f(x)$ and is completely determined by the image of the roots, giving (a). In (b), choose a root α of $f(x)$ in F. Then there are p cosets for the subgroup:

$$
\operatorname{Gal}(F / K(\alpha)) \subset \operatorname{Gal}(F / K)
$$

and so p divides the order $|\operatorname{Gal}(F / K)|$, and then by Cauchy's Theorem, there is an element of order p. Finally, the only elements of order p in S_{p} are the p-cycles.

Corollary 5. Supppose $f(x) \in \mathbb{Q}[x]$ is irreducible of prime degree p that splits in $\mathbb{C}[x]$ with exactly two complex roots. Then the Galois group of F / \mathbb{Q} is S_{p}.
Remark. Every polynomial splits in $\mathbb{C}[x]$. This is the fundamental theorem of algebra, which you may have seen proved in a complex analysis class. We will also prove it using the intermediate value theorem and Galois theory in the next section.

Proof. By the Corollary, the Galois group $\operatorname{Gal}(F / \mathbb{Q})$ contains a p-cycle which, without loss of generality, we write as $g=(12 \cdots p) \in$. It also contains complex conjugation, which (via the single pair of complex roots) is a transposition (ij). But then this this transposition (repeatedly) by the p-cycle gives:

$$
(1 d),(d 2 d), \ldots \ldots,((p-2) d(p-1) d) \in \operatorname{Gal}(F / \mathbb{Q}) \subset S_{p} \text { for } d=|j-i|+1
$$

and these generate the full symmetric group.
The reader is invited to find polynomials of degree 5 that satisfy this criterion. In particular, notice that the Galois group is not solvable for these polynomials.

Suppose instead that $f(x)$ has four complex roots. Then:

$$
g=(12 \cdots p) \in \operatorname{Gal}(F / \mathbb{Q}), \text { and } c=(i j)(k l) \in \operatorname{Gal}(F / \mathbb{Q})
$$

are both elements of the alternating group. However this shows neither that the Galois group is contained in the alternating group A_{p} nor that it contains the alternating group. For example, when:

$$
f(x)=x^{5}-b
$$

we've seen that the Galois group has order 20 (and contains a 4-cycle).
The inverse Galois problem asks whether every finite group is the Galois group of a splitting field F / \mathbb{Q} of some (irreducible) polynomial $f(x)$. As far as I know, this is still open. However, it makes sense to ask for some examples.

Cyclic Galois Groups (of odd prime order). These need to come from irreducible polynomials $f(x)$ of degree p (since the degree divides the order of the Galois group), all of whose roots are real (otherwise complex conjugation would add elements of order two). But if $\alpha_{1}, \ldots, \alpha_{d} \in F$ are the roots of a polynomial $f(x)$, then:

$$
\prod_{i<j}\left(\alpha_{j}-\alpha_{i}\right) \in F
$$

and the square of this is the discriminant $\Delta(f)$, which is a polynomial in the coefficients of f (hence in \mathbb{Q}). Thus, if $\Delta(f) \in \mathbb{Q}$ is not a perfect square, then:

$$
\mathbb{Q}(\sqrt{\Delta(f)}) \subset F
$$

and the Galois group $\operatorname{Gal}(F / K)$ is divisible by two (hence not cyclic of order p).
For example among polynomials of degree three with no quadratic term, we have:

$$
f(x)=x^{3}+p x+q \text { and } \Delta(f)=-4 p^{3}-27 q^{2}
$$

Can $\Delta(f)$ be a perfect square while $f(x)$ remains irreducible? Sure. For example:

$$
f(x)=x^{3}-7 x+6 \text { has discriminant } \Delta(f)=400=20^{2}
$$

and it is certainly irreducible by Eisenstein (or the roots test). And this works!
Alternatively, one might look at the cyclotomic polynomial:

$$
\Phi_{p^{2}}(x) \text { with Galois group }\left|\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{*}\right|=C_{(p-1) p}=C_{p-1} \times C_{p}
$$

and prove the existence of splitting sub-field $E \subset \mathbb{Q}\left(\omega_{p^{2}}\right)$ with $\operatorname{Gal}(F / E)=C_{p-1}$ which will imply that:

$$
\operatorname{Gal}(E / \mathbb{Q})=C_{(p-1) p} / C_{p-1}=C_{p}
$$

We'll see how to do this in the next section.

