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Introducing Galois Theory

Let K be a field.

Definition. (a) A polynomial f(x) ∈ K[x] is separable if it has no repeated roots
as a polynomial in L[x] for any extension K ⊂ L. .

(b) An element α ∈ L of an extension K ⊂ L is separable over K if it is either
transcendental for the irreducible f(x) ∈ K[x] with f(α) = 0 is separable.

(c) An extension K ⊂ L is separable if each α ∈ L is separable over K.

(d) A field K is perfect if every field extension of K is separable.

Examples. If f(x) ∈ K[x] has a repeated root α in any extension K ⊂ L, then

(x− α) is a common divisor of f(x) and f ′(x) in L[x]

But the gcd belongs toK[x] (by Euclid’s algorithm) so if f(x) has a repeated root in
some field extension then either f ′(x) = 0 (identically) or else f(x) is reducible, with
a factor dividing f ′(x). In particular, every irreducible polynomial with coefficients
in a field of characteristic zero is separable. Thus all such fields are perfect.

Finite fields are also perfect although they support (reducible) polynomials with
f ′(x) = 0. If F is a finite field and α ∈ L for an extension F ⊂ L, then either K(α)
is infinite, in which case α is transcendental over K, or else K(α) ⊂ Fq for some
field with q elements. But the elements of Fq are precisely the (distinct!) q roots
of xq − x, so the irreducible polynomial f(x) with f(α) = 0 must be a factor of
xq − x, and as such it has distinct roots (and its derivative is not zero).

On the other hand, the field Fp(t) is not perfect since the polynomial:

f(x) = xp − t ∈ Fp(t)[x]

is irreducible and a pth power, when thought of as a polynomial in Fp(t
1
p )[x].

Let f(x) ∈ K[x].

Definition. A splitting field F/K for f(x) is a splitting extension that is minimal,
in the sense that there is no intermediate splitting extension K ⊂ E ⊂ F .

Note: There is a unique splitting field F := K(α1, ...., αr) inside each splitting
extension L, namely the smallest subextension that contains all the roots αi ∈ L.

By induction and Proposition 1 from the previous section,

K[x1, ..., xr] → K(α1, ...., αr) ⊂ L

is a surjection from the polynomial ring onto the splitting field.

Definition. The Galois group of a splitting field F/K (for some f(x) ∈ K[x]) is:

Gal(F/K) = AutK(F )

the group of automorphisms of the field F that restrict to the identity on K.

We want to prove that this group is determined (up to isomorphism) by the
polynomial f(x) itself, and not just by the splitting field. Instead of comparing two
splitting fields F1/K and F2/K for the same field K, it useful to think of them as
splitting fields over isomorphic but distinct fields K1 and K2.
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Proposition 1. Let τ : K1 → K2 be an isomorphism of fields and let

τ̃ : K1[x] → K2[x] be defined by τ̃
(∑

aix
i
)
=

∑
τ(ai)x

i

Fix f(x) ∈ K1[x] and let F1/K1 and F2/K2 be splitting fields for f and τ̃(f). Then:

(a) There is an isomorphism σ : F1 → F2 such that σ|K1
= τ .

(b) If f(x) is separable, there are [F1 : K1] isomorphisms in (a). In particular:

|Gal(F/K)| = [F : K]

for every splitting field of a separable polynomial f(x) ∈ K[x].

(c) The Galois groups of the various splitting fields of an arbitrary f(x) ∈ K[x]
are all isomorphic to one another.

Proof. If f(x) splits in K1 then τ̃(f)(x) splits in K2, and F1 = K1 and F2 = K2

and there is nothing to prove in (a) or (b). Otherwise choose an irreducible factor
g(x) of f(x) of degree > 1 and a root α1 ∈ F1 of g(x).

For each root β ∈ F2 of τ̃(g)(x), we obtain an extension of τ to:

τβ : K1(α1) → K2(β) ⊂ F2 defined by τβ(α1) = β

an isomorphism of fields K1(α1) and K(β). If f1(x) is separable, then there are:

[K1(α1) : K1] = deg(g)

such maps to F2 corresponding to the distinct roots of τ̃(g).

For each choice of β (giving rise to τβ) , we repeat the process with K1 replaced
with K1(α1) and K2 replaced with K2(β) (and τ replaced with τβ). Since

F1 = K1(α1, ...., αr)

for distinct roots αi of a series of factors gi(x) with αi+1 ̸∈ K(α1, ...., αi), we
get (a) and (b) after r iterations, the point in (b) being that the isomorphism
σ : K(α1, ...., αr) → F2 is uniquely determined by the images of α1, ...., αr.

As for (c), let F1/K and F2/K be two splitting fields for f(x) ∈ K[x]. Then
the isomorphism σ guaranteed by (a) (and its inverse) may be used to define the
isomorphism Gal(F1/K) to Gal(F2/K) by conjugation. Namely,

g 7→ σ ◦ g ◦ σ−1

defines the isomorphism of Galois groups with inverse defined by σ−1. □

Finite Fields

Corollary 1. Two finite fields with the same number of elements are isomorphic.

Proof. Let F be a field with q elements. By virtue of the fact that F ∗ is cyclic
(of order q−1) it follows that F/Fp is a splitting field for xq−x, which is a separable
polynomial over the (fixed!) field Fp = Z/pZ. Now apply the Proposition.

Let Fq be “the” finite field with q = pd elements.

Corollary 2. The Galois group Gal(Fq/Fp) is cyclic of order d, generated by:

ϕ : Fq → Fq defined by ϕ(α) = αp

This is the Frobenius element of the Galois group.
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Proof. The Frobenius element is an automorphism of Fq fixing Fq since:

ϕ(a) = a for a ∈ Fp and ϕ(αβ) = ϕ(α)ϕ(β) and ϕ(α+ β) = ϕ(α) + ϕ(β)

the last being the surprising result, following from the fact that:

(α+ β)p = αp + βp in any field of characteristic p

This element is not the identity (unless d = 1), and indeed,

Gal(Fq/Fp) = {ϕ, · · · , ϕd−1, ϕd = idFq
} = Cd

with ϕd(α) = αpd

= αq = α for all α ∈ Fq giving ϕd = id.

Notice that if e divides d, then:

Fpe = {α ∈ Fq | ϕe(α) = αpe

= α} ⊂ Fq

is the “fixed subfield” of the subgroup of the Galois group generated by ϕe.

This gives us a correspondence between the subgroups of the Galois group Cd

and the subfields of Fq. Moreover, notice that all the subgroups are normal and all
the subfields of Fq are splitting fields of some polynomial in Fp[x]. This is our first
encounter with Galois Theory.

Cyclotomic Fields

Let ωn = e2πi/n. Then Q(ωn)/Q is a splitting field for xn − 1, and so

Gal(Q(ωn)/Q) = (Z/nZ)∗ via ωn 7→ ωd
n

is once again an abelian group (though not necessarily cyclic), and then:

Corollary 3. The irreducible polynomial Φn(x) ∈ Q[x] for ωn has degree ϕ(n).

This is the nth cyclotomic polynomial.

Note. This ϕ(n) (surely the most overused greek letter in math) is the Euler totient,
which is the size of the Galois group, hence also equal to [Q(ωn) : Q] = deg(Φn(x)).

Examples. For all primes p, the cyclotomic polynomial is: Φp(x) = (xp−1)/(x−1)

Φ4(x) = x2 + 1

Φ6(x) = x2 − x+ 1

Φ8(x) = x4 + 1

Φ9(x) = x6 + x3 + 1

Φ12(x) = x4 − x2 + 1

Remark. The product formula
∏

d|n Φd(x) = xn − 1 for cyclotomic polynomials

reprises the sum (taking degrees):∑
d|n

ϕ(d) = n that we saw earlier

Let’s explore some of these splitting fields Q(ωn) in more detail:

• (Z/8Z)∗ = {1, 3, 5, 7} is isomorphic to K4 and has three subgroups of order 2.
Not coincidentally, there are three intermediate subfields:

Q ⊂ Ei ⊂ Q(ω) = Q(
√
i), namely

E1 = Q(i) = Q(ω2), E2 = Q(
√
2) = Q(ω + ω−1) and E3 = Q(

√
−2) = Q(ω − ω−1)

which are fixed subfields for the elements ω 7→ ω5, ω7 and ω3 respectively!
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• (Z/5Z)∗ = C4, on the other hand, has only has one subgroup, and

Q(
√
5) = Q(ω + ω−1) ⊂ Q(ω)

is the fixed field for ω 7→ ω4. The polynomial relation: (ω+ω4)2+(ω+ω4)−1 = 0
gives us another computation of

ω + ω−1 = 2 cos(2π/5) =
−1 +

√
5

2

• (Z/7Z)∗ = C6 has two subgroups C2 and C3, and

E1 = Q(ω + ω−1) and E2 = Q(ω + ω2 + ω4)

are the subfields fixed by ω 7→ ω6 and ω 7→ ω2, respectively. Note that ω+ω2 +ω4

is a root of x2 + x+ 2 = 0, giving us:

ω + ω2 + ω4 =
−1 +

√
−7

2
and E2 = Q(

√
−7)

while ω+ ω6 is a root of x3 + x2 − 2x− 1 = 0, so this irreducible cubic polynomial
relation satisfied by 2 cos(2π/7) shows that 2 cos(2π/7) is not constructible.

We have a final corollary that is half of the cornerstone of Galois Theory.

Corollary 4. Fix a splitting field F/K for a polynomial f(x) ⊂ K[x]. Then:

(a) F/E is a splitting field of f(x) for each intermediate field K ⊂ E ⊂ F , and:

Gal(F/E) ⊂ Gal(F/K)

is a subgroup whose right cosets are in bijection with the set HomK(E,F ).

(b) If E/K is a splitting field for g(x) ∈ K[x], then each element of the Galois
group Gal(F/K) fixes the subfield E ⊂ F , giving rise to an exact sequence:

1 → Gal(F/E) → Gal(F/K) → Gal(E/K) → 1

of Galois groups. In particular, Gal(F/E) ⊂ Gal(F/K) is a normal subgroup.

Proof. It is clear that F/E is a splitting field for f(x). The inclusion of Galois
groups in (a) (and (b)) follows right away from the definition of the Galois group.
After all, an automorphism of F fixing E must also fix K. Suppose ι : E → F is
a field embedding that fixes K. Let τ : E → ι(E) be the isomorphism. Then by
Proposition 1 (a), τ lifts to an element σ ∈ Gal(F/K). Moreover, the cosets

σ ◦Gal(F/E) ⊂ Gal(F/K) are all the lifts of τ

This gives (a).

When E/K is a splitting field of g(x) ∈ K[x] in (b), then E is mapped to E by
every element of Gal(F/K) since the roots of g(x) map to roots of g(x), and the
resulting group homomorphism Gal(F/K) → Gal(E/K) is surjective by (a). □

nth Roots

Recall that every positive integer b ∈ Z has a full set of n complex nth roots.
That is,

Q ⊂ C is a splitting extension for the polynomial f(x) = xn − b

and we let F/Q be the splitting field of Q for xn − b contained in C. We seek to
understand the Galois group of this splitting field.



5

Notice that ωn ∈ F is a ratio of nth roots of b, and so:

Q(ωn) ⊂ F, and indeed F = Q(ωn,
n
√
b)

where n
√
b is the positive real nth root of b (this is the only reason we chose b > 0).

This might seem to say everything we need to know about the splitting field F/Q.
But there’s actually more work to be done. Since Q(ωn)/Q is also a splitting field
(for the cyclotomic polynomial), we get an exact sequence:

(∗) 1 → Gal(F/Q(ωn)) → Gal(F/Q) → Gal(Q(ωn)/Q) → 1

of Galois groups by Corollary 4. Moreover, this sequence is right-split via:

h : |(Z/nZ)∗| = Gal(Q(ωn)/Q) → Gal(F/Q); hd(ω) = ωd and hd(
n
√
b) =

n
√
b

which only leaves us the problem of figuring out the Galois group of the splitting
field F/Q(ωn) = Q(ωn)(

n
√
b)/Q(ωn) (and the details of the semidirect product).

This is contingent, of course, on the values of n and b. For example, if b is already
a perfect nth power as an integer, then all the nth roots of b are already in Q(ωn),
and h is an isomorphism. At the other extreme:

Case One. If xn − b remains irreducible in Q(ωn)[x], there must be an element
g ∈ Gal(F/Q(ωn)) with the property that

g(
n
√
b) = (

n
√
b) · ωn

from which it follows (by the invariance of Q(ωn)) that the effect of g on all roots
is to rotate by an angle of 2π/n. But

|Gal(F/Q(ωn))| = [F : Q(ωn)] = n

from the Proposition, and so the Galois group is the cyclic group, generated by g.
Thus, the exact sequence (∗) is:

1 → Cn → Gal(F/Q) → Aut(Cn) → 1

and the semi-direct product is “canonical” via ϕ = id : Aut(Cn) → Aut(Cn) since:

hd ◦ g ◦ h−1
d = gd is rotation of the roots by 2πd/n

When n = 3, this gives S3, and when n = 5, it is the “mystery” group of order 20.

Case Two. xn − b is irreducible in Q[x] (but might be reducible in Q(ωn)[x]).
Then the n cosets of the inclusion of Galois groups:

Gal(F/Q(
n
√
b)) ⊂ Gal(F/Q)

from Corollary 4 correspond to the n different embeddings Q( n
√
b) ↪→ F .

In particular, |Gal(F/Q)| is divisible by n. When n = p, this is enough to
conclude that xp − b is also irreducible in Q(ωn)[x], and so we are in case one. But
when n is not a prime, or more precisely, when n and ϕ(n) are not relatively prime,
it is possible for xn − b to factor in Q(ωn)[x], in which case we can only conclude:

(†) 1 → G → Gal(F/Q) → Aut(Cn) → 1

for a group G that is the Galois group of the splitting field of an irreducible factor
g(x) of f(x) = xn − b ∈ Q(ωn)[x], and such that:

n divides |Gal(F/Q)| = |G| · ϕ(n) = deg(g(x)) · ϕ(n)
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Example. Consider the irreducible polynomial x8 − 2 ∈ Q[x]. We claim that:

x8 − 2 is reducible in Q(ω8)[x]

We can see this from the subfield Q(
√
2) = Q(ω8 + ω−1

8 ), showing that indeed:

x8 − 2 = (x4 +
√
2)(x4 −

√
2) ∈ Q(ω8)[x]

and ω8 is a root of the first of these polynomials. But could it factor any further?
One way to see it doesn’t is to apply Eisenstein’s criterion with the Euclidean
domain D = Z[

√
2], in which

√
2 is an irreducible element.

Thus the Galois group has order 16, and reasoning as in Case One gives us:

g(
8
√
2) = (

8
√
2) · ω2

8 = (
8
√
2) · i

in G ⊂ Gal(F/Q), showing that G = Gal(F/Q(ω8)) is the cyclic group C4.

One could now analyze the semi-direct product in (†) to get the Galois group.
We can also pass to the sub-splitting field Q(i) ⊂ F , and use Corollary 4 to obtain:

(∗∗) 1 → Gal(F/Q(i)) → Gal(F/Q) → Gal(Q(i)/Q) → 1

This is right-split by complex conjugation c ∈ Gal(F/Q), and in addition,

|Gal(F/Q(i))| = 16/2 = 8

so x8 − 2 is irreducible in Q(i)[x]. This Galois group is also cyclic, but is not
generated by the rotation by ω8 (since that would be an element of G). Instead, it
“has to be” a lift of the element ω 7→ ω5 from the Galois group of Q(ω8)/Q(i). I.e.

γ(
8
√
2) = (

8
√
2) · ω and γ(ω) = ω5(= −ω)

Then

c ◦ γ ◦ c−1 = γ3

as one is invited to check, and in particular, Gal(F/Q) is not dihedral group!

Miscellaneous

Let F/K be a splitting field for a separable polynomial f(x) ∈ K[x] of degree d.
Then:

Proposition 2. (a) The Galois group of F/K is a subgroup of Sd.

(b) If p is prime and f(x) is irreducible, then Gal(F/K) contains a p-cycle.

Proof. The Galois group takes roots of f(x) to roots of f(x) and is completely
determined by the image of the roots, giving (a). In (b), choose a root α of f(x)
in F . Then there are p cosets for the subgroup:

Gal(F/K(α)) ⊂ Gal(F/K)

and so p divides the order |Gal(F/K)|, and then by Cauchy’s Theorem, there is an
element of order p. Finally, the only elements of order p in Sp are the p-cycles. □

Corollary 5. Supppose f(x) ∈ Q[x] is irreducible of prime degree p that splits in
C[x] with exactly two complex roots. Then the Galois group of F/Q is Sp.

Remark. Every polynomial splits in C[x]. This is the fundamental theorem of
algebra, which you may have seen proved in a complex analysis class. We will also
prove it using the intermediate value theorem and Galois theory in the next section.
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Proof. By the Corollary, the Galois group Gal(F/Q) contains a p-cycle which,
without loss of generality, we write as g = (1 2 · · · p) ∈. It also contains complex
conjugation, which (via the single pair of complex roots) is a transposition (i j).
But then this this transposition (repeatedly) by the p-cycle gives:

(1 d), (d 2d), ......, ((p− 2)d (p− 1)d) ∈ Gal(F/Q) ⊂ Sp for d = |j − i|+ 1

and these generate the full symmetric group. □

The reader is invited to find polynomials of degree 5 that satisfy this criterion.
In particular, notice that the Galois group is not solvable for these polynomials.

Suppose instead that f(x) has four complex roots. Then:

g = (1 2 · · · p) ∈ Gal(F/Q), and c = (i j)(k l) ∈ Gal(F/Q)

are both elements of the alternating group. However this shows neither that the
Galois group is contained in the alternating group Ap nor that it contains the
alternating group. For example, when:

f(x) = x5 − b

we’ve seen that the Galois group has order 20 (and contains a 4-cycle).

The inverse Galois problem asks whether every finite group is the Galois group
of a splitting field F/Q of some (irreducible) polynomial f(x). As far as I know,
this is still open. However, it makes sense to ask for some examples.

Cyclic Galois Groups (of odd prime order). These need to come from irreducible
polynomials f(x) of degree p (since the degree divides the order of the Galois group),
all of whose roots are real (otherwise complex conjugation would add elements of
order two). But if α1, ...., αd ∈ F are the roots of a polynomial f(x), then:∏

i<j

(αj − αi) ∈ F

and the square of this is the discriminant ∆(f), which is a polynomial in the
coefficients of f (hence in Q). Thus, if ∆(f) ∈ Q is not a perfect square, then:

Q(
√
∆(f)) ⊂ F

and the Galois group Gal(F/K) is divisible by two (hence not cyclic of order p).

For example among polynomials of degree three with no quadratic term, we have:

f(x) = x3 + px+ q and ∆(f) = −4p3 − 27q2

Can ∆(f) be a perfect square while f(x) remains irreducible? Sure. For example:

f(x) = x3 − 7x+ 6 has discriminant ∆(f) = 400 = 202

and it is certainly irreducible by Eisenstein (or the roots test). And this works!

Alternatively, one might look at the cyclotomic polynomial:

Φp2(x) with Galois group |(Z/p2Z)∗| = C(p−1)p = Cp−1 × Cp

and prove the existence of splitting sub-field E ⊂ Q(ωp2) with Gal(F/E) = Cp−1

which will imply that:

Gal(E/Q) = C(p−1)p/Cp−1 = Cp

We’ll see how to do this in the next section.


