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Fields

We have seen several types of fields so far:

• The underlying fields Fp := Z/pZ (for primes p) and the rational numbers Q.
One (and only one) of these is present as a subfield of each field k, determining the
characteristic of each field k.

• The fields R of real numbers and C of complex numbers, the first of which is
the completion of the field Q (with respect to absolute value) and the second of
which is R+ iR (for a choice of square root i of −1).

• Function fields k(x1, ..., xn) with coefficients in a fixed field, and more generally,
the field of fractions K(D) of an integral domain D, e.g.

D = k[x1, ...., xn]/P for a field k and prime ideal P

In algebraic geometry, these are the rational functions on an affine variety, and
when P is maximal, e.g. when n = 1 and P = ⟨f(x)⟩, then the quotient domain is
already a field (and the affine variety is a point).

Definition. (a) An inclusion K ⊂ L of fields is a field extension, in which case L
is an algebra and a vector space over K, and if the dimension of L is finite, then:

[L : K] := dimK L

is the degree of the finite field extension.

(b) An element α ∈ L is algebraic over K if α is a root of a polynomial:

f(x) = cdx
d + cd−1x

d−1 + · · ·+ c0 ∈ K[x]

The field extension itself is algebraic if every element of L is algebraic over K.

(c) An element α ∈ L that is not algebraic over K is called transcendental.

Remarks. (i) The polynomial f(x) in (b) may be chosen to be monic and irreducible,
in which case it is uniquely determined by α ∈ L.

(ii) A finite field extension is necessarily algebraic, but not vice versa.

Examples. • A finite field extension of Fp of degree d has q = pd elements.

• Each n
√
2 is algebraic over Q, with irreducible polynomial f(x) = xn − 2.

• π ∈ R is a transcendental element of the field extension Q ⊂ R.
Proposition 1. (a) The degrees of finite field extensions multiply:

[L : K] · [K : F ] = [L : F ] for finite field extensions F ⊂ K ⊂ L

(b) Let α ∈ L be algebraic over K for K ⊂ L and consider the ring map:

ϕ : K[x] → L defined by ϕ(x) = α and ϕ|K = idK

Then the kernel of ϕ is the ideal generated by f(x), the polynomial in (b) above
and the image of ϕ is K(α) ⊂ L, the smallest subfield of L that contains both the
field K and the element α ∈ L. Moreover, deg(f(x)) = [K(α) : K].

As a corollary, we get a result reminiscent of Lagrange’s Theorem for groups:

Corollary. If [L : K] = d then [F : K] divides d for all intermediate K ⊂ F ⊂ L.
In particular, if d = p is prime, then K(α) = L for all α ∈ L−K.
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Proof. If β1, ..., βe are a basis for K as a vector space over F , and α1, ...., αd

are a basis for L as a vector space over K, then if:

α =
∑
i

kiαi for ci ∈ K and ci =
∑
j

fijβj for fij ∈ F

it follows that:
α =

∑
i,j

fi,jαiβj

so the elements αiβj span L as a vector space over K, and if:

0 =
∑
i,j

fi,jαiβj =
∑
i

kiαi for
∑
j

fi,jβj = ki

then ki = 0 for all i (αi is a basis) and then also fi,j = 0 for all j (βj is a basis).
So the αiβj are linearly independent. This gives (a).

For (b), notice that the image of K[x] is a domain, so the kernel is a prime ideal,
which is a maximal ideal (in the PID K[x]), generated by an irreducible polynomial
f(x) ∈ K[x] of degree d satisfying f(α) = 0. Any two such polynomials necessarily
generate the same ideal, so f(x) is unique, given that it is also monic, and a basis
of K(α) as a vector space over K is given by 1, α, ..., αd−1. □

Definition. An extension K ⊂ L splits a monic polynomial f(x) ∈ K[x] if:

f(x) =

d∏
i=1

(x− αi) as a polynomial in L[x]

Remark. In this definition, there is no requirement that f(x) ∈ K[x] be irreducible.
Thus, K itself splits all products of linear polynomials in K[x].

Proposition 2. A splitting extension exists for each f(x) ∈ K[x].

Proof. Let g(x) be an irreducible factor of f(x) of degree > 1 in the ring K[x]
(if no such factor exists, then we are done by the Remark). Construct the field:

L = K[x]/⟨g(x)⟩ and let α = x ∈ L

Then in the ring L, the polynomial g(x) has a linear factor x−α and the number of
linear factors of f(x), thought of as a polynomial in L[x], is at least one more than
the number of linear factors of f(x) in K[x]. Replace K with L and repeat. □

Examples. (a) Consider the polynomial:

f(x) = xn − 1 ∈ Q[x]

Then Q ⊂ C is a splitting extension, and if ω = e2πi/n, then Q ⊂ Q(ω) is already
a splitting extension. The degree is not n, but rather the degree of the cyclotomic
polynomial, i.e. the irreducible polynomial relation satisfied by ω.

(b) Consider instead the polynomial

g(x) = xn − 2

Then this polynomial is irreducible, but Q( n
√
2) only picks up two roots if n is even

and only one root if n is odd. We do, however, obtain a splitting extension by
tossing in ω at the next iteration, since all nth roots of 2 are in Q ⊂ Q( n

√
2)(ω).

There is a really remarkable corollary to Proposition 2 in characteristic p.

Corollary. There exist fields Fq with any prime power q = pd (d ≥ 1) of elements.
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Proof. Let Fp ⊂ L be a splitting extension for xq − x, and consider:

F = {α ∈ L | αq − α = 0} ⊂ L

Then Fp ⊂ F by Fermat’s little theorem, since ap
d

= (ap)p
d−1

= ap
d−1

= ... = a
for all a ∈ Fp, and if α ∈ F , then −α ∈ F and 1/α ∈ F ; and if α1, α2 ∈ F , then
α1α2 ∈ F and α1 + α2 ∈ F , the latter, similarly, being a result of:

(α1 + α2)
pd

= ((α1 + α2)
p)p

d−1

= (α1 + α2)
pd−1

= · · · = α1 + α2

by the binomial theorem (and the fact that pα = 0 for all α ∈ F ).

Notice that the roots of f(x) = xq − x are distinct since the derivative satisfies:

f ′(x) = −1 and any multiple root of xq − x is a root of f ′(x)

by the Leibniz rule for differentiation. Thus F is a field with q = pd elements! □

Proposition 3. If F is a field and G ⊂ (F ∗, ·) is a finite subgroup, then G is cyclic.

Proof. Let |G| = n. Then by Lagrange’s Theorem, each g ∈ G is a root of:

f(x) = xn − 1 ∈ F [x]

so in particular the nth roots of 1 are distinct in F , and G is the (full) set of them.
Next, we claim that there is a “primitive” root g ∈ G generating the group G of
nth roots of 1. Consider an element h ∈ G generating a proper cyclic subgroup
Cd = H ⊂ G. Then d divides n and H is the (full) set of roots of the polynomial
xd − 1 in F . Moreover, the primitive dth roots of 1 in F are the generators of H,
and there are ϕ(d) generators of Cd, as we’ve discussed earlier. But:

n =
∑
d|n

ϕ(d)

as one can check, for instance, by considering the case F = C, in which we already
know that the group of nth roots of 1 is cyclic. It follows from this that:∑

d|n,d̸=n

ϕ(d) = n− ϕ(n) < n

so G has extra nth roots, after accounting for all the non-primitive nth roots h,
and each of those left-over roots generates G as a cyclic group. □

Corollary. There are irreducible polynomials of all degrees in Fp[x].

Proof. Fix q = pd and let Fq be a field with q elements. Since (Fq)
∗ is cyclic by

the Proposition, it follows that (Fq)
∗ is generated by an element α ̸= 0, and then

Fp(α) = Fq

and if we let f(x) = 0 be the monic, irreducible polynomial equation satisfied by
the (necessarily algebraic) element α ∈ Fq, then f(x) has degree d. □

Remark. The corollary only establishes the existence of the irreducible polynomials.
It does not give any hints about how to find them.

Examples. The irreducible polynomials for F2[x] of degrees 2, 3, 4 are:

x2 + x+ 1, x3 + x+ 1, x3 + x2 + 1, x4 + x+ 1, x4 + x3 + 1, x4 + x3 + x2 + x+ 1

so we see that the irreducible polynomials in a given degree need not be unique.
However, we will see that the fields with q elements are all isomorphic.
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In F3[x], we see that x2 + 1 is irreducible, so

F = F(α) = F3[x]/⟨x2 + 1⟩ is a field with 9 elements

The generator α = x of this field does not generate the group F ∗ since

α2 = −1 and α4 = 1 so α only has order 4

Remark. However, once can check that α+ 1 generates F ∗.

Here is an application of Proposition 1 to a problem from antiquity.

(Non)-Constructible Numbers. Mark points “0” and “1” in the plane and use a
compass and (unmarked) straightedge to construct a sequence of additional points
as intersection points of lines (through two previously constructed points) drawn
with the help of the straightedge, and circles (centered at a previously constructed
point with radius equal to the distance between two previously constructed points)
drawn with the compass. A distance between two points constructed in this way is
constructible.

Perpendicular lines (to a given line through a given point) can be constructed,
all angles can be bisected, constructible lengths can be added (easy), multiplied
and inverted (using similar triangles), so the constructible real numbers together
with zero and their additive inverses are a subfield K ⊂ R.

By means of the Pythagorean Theorem, one learns that if l is constructible,
then

√
1 + l2,

√
2l and

√
l are constructible. From this it follows that every tower

of quadratic (degree two) field extensions Q ⊂ F1 ⊂ F2 ⊂ · · · ⊂ R can be realized
by adjoining constructible square roots αi =

√
li (via the quadratic formula).

Example. The (complex) primitive fifth root of unity ζ5 = cos(2π/5)+ i sin(2π/5)
is a root of the irreducible (cyclotomic) polynomial

x4 + x3 + x2 + x+ 1

which factors as a product of quadratic polynomials:

(x2 + αx+ 1)(x2 + βx+ 1) for α+ β = 1, αβ = −1

These cannot be solved with integers, but they do have “golden mean” solutions:

α =
1−

√
5

2
, β =

1 +
√
5

2
∈ Q(

√
5)

from which we deduce the fact (from a root of the α quadratic factor) that:

cos(2π/5) =

√
5− 1

4
∈ Q(

√
5) and

sin(2π/5) =

√
2(
√
5 + 5)

4
∈ Q(

√
5)

(√
2
√
5 + 5)

)
are both constructible.

Proposition 4. Every subfield F ⊂ K that is a finite field extension of Q satisfies:

[F : Q] = 2d for some d

Proof. We may construct perpendicular lines and therefore an (integer) grid on
the plane. Given two points in the plane with coordinates in L for some finite field
extension L of Q, then by the Pythagorean theorem, the distance between the two
points is in L or the field L(

√
l) for some l = a2 + b2 ∈ L.
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If two lines are drawn through points with coordinates in L, their intersection
point has coordinates in L, and if one such line and one or two circles are drawn
centered at points wit coordinates in L with radii of the circle(s) in L, then the

coordinates of the intersection points are also in L(
√
l) for some l ∈ L. Thus,

(a basis of) F lies in a field extension Q ⊂ L obtained by a series of degree two
extensions:

Q ⊂ L1 = Q(
√
l1) ⊂ L2 = L1(

√
l2) ⊂ · · · ⊂ L = Ln−1(

√
ln)

so Q ⊂ F itself is a field extension of degree 2d (dividing 2n) by Proposition 1. □

Corollary. (a) The cube may not be doubled with a straightedge and compass.

(b) There is no way to trisect a general angle with straightedge and compass.

Proof. If the unit cube may be doubled (in volume), i.e. if the side length of

the cube satisfies 3
√
2 ∈ K, then it must be constructible in a finite number of steps,

and then Q ⊂ Q( 3
√
2) ⊂ F for some F , which is impossible by Proposition 1 since

3 = Q([
3
√
2 : Q] does not divide 2d for any d

Similarly, if there were a method for trisecting a general angle, then it could be
applied to the angle π/3 to construct π/9 (since the angle π/3 is easily constructed).
Angles can be translated with a straightedge and compass so setting the vertex of
the angle at the origin, with lower edge on the real line (through “0” and “1”) and
projecting to the axes would allow one to construct lengths:

cos(π/9) and sin(π/9)

But α = cos(π/9) is a root of the cubic polynomial equation:

f(x) = 8x3 − 6x− 1 = 0

(which follows from the triple angle formula cos(3θ) = 4 cos(θ)2 − 3 cos(θ)) so as
above we conclude that Q(cos(2π/9)) ̸⊂ F for any finite subfield of K, and we
conclude that the angle π/9 cannot be constructed. So π/3 cannot be trisected.


