Abstract Algebra. Math 6320. Bertram/Utah 2022-23. Group Characters and more Galois Theory

We will prove the following foundational result of Galois Theory.
Theorem. Let F / K be a splitting field for a separable polynomial $f(x) \in K[x]$ and let $G=\operatorname{Gal}(F / K)$ be the Galois group of the splitting field. Then:
(a) For each subgroup $H \subset G$, the intermediate "fixed field" of H :

$$
F^{H}:=\{\alpha \in F \mid h(\alpha)=\alpha \text { for all } h \in H\} \text { satisfies } \operatorname{Gal}\left(F / F^{H}\right)=H
$$

(b) If $E \subset F$ is an intermediate field, then $F^{\mathrm{Gal}(F / E)}=E$ (inverting (a)).
(c) The subgroup H in (a) is normal if and only if F^{H} / K is a splitting field.

That is, fixed fields (and Galois groups) determine a bijections:

$$
\begin{aligned}
& \{\text { subgroups of } G\} \leftrightarrow\{\text { intermediate fields } K \subset E \subset F\} \text { and } \\
& \{\text { normal subgroups of } G\} \leftrightarrow\{\text { intermediate splitting fields }\}
\end{aligned}
$$

To get to this Theorem, we'll use a new idea.

Characters

Let G be a group and K be a field.
Definition. A character of G in K is a group homomorphism $\chi: E \rightarrow K^{*}$.
Remark. Each character satisfies $\chi\left(g h g^{-1} h^{-1}\right)=\chi(g) \chi(h) \chi(g)^{-1} \chi\left(h^{-1}\right)=1 \in K^{*}$ since K^{*} is abelian. So each character factors through the abelian quotient by the commutator subgroup:

$$
\chi: G \rightarrow G /[G, G] \rightarrow K^{*}
$$

and these "one-dimensional" characters are therefore a feature of abelian groups.
A character of \mathbb{Z} is determined by the choice of an element $\alpha=\chi(1) \in K^{*}$ with:

$$
\chi(d)=\alpha^{d} \text { for all } d \in \mathbb{Z}
$$

and a character of $C_{n}=\mathbb{Z} / n \mathbb{Z}$ is similarly the choice of an nth root of unity in K.
A character is, in particular, a (non-zero) vector in the vector space:

$$
\operatorname{Fun}(G, K)=\{f: G \rightarrow K\}
$$

and characters $\chi_{1}, \ldots, \chi_{n}$ are independent if they are linearly independent functions,
i.e. if $\sum_{i=1}^{n} c_{i} \chi_{i}(g)=0$ for all $g \in G$ if and only if $c_{1}=\cdots=c_{n}=0$ in K

When $|G|<\infty$, we may choose a basis $e_{g} \in \operatorname{Fun}(G, K)$ (of non-characters!) by:

$$
e_{g}(g)=1 \text { and } e_{g}(h)=0 \text { otherwise }
$$

and in terms of this basis, $\chi_{i}=\sum_{g \in G} \chi_{i}(g) e_{g}$.
Somewhat surprisingly, we have the following:
Proposition 1. Every set of distinct characters (of any group) is independent.
Proof. We will prove this by induction on the number of characters.

Let $\chi_{1}, \ldots, \chi_{n}: G \rightarrow K^{*}$ be distinct characters with $n \geq 2$, and suppose:

$$
c_{1} \chi_{1}+\cdots+c_{n} \chi_{n}=0 \text { is a linear relation }
$$

Then for each fixed $h \in G$ and all $g \in G$, we have the identity:

$$
c_{1} \chi_{1}(h) \chi_{1}(g)+\cdots+c_{n} \chi_{n}(h) \chi_{n}(g)=c_{1} \chi_{1}(g h)+\cdots+c_{n} \chi_{n}(g h)=0
$$

and subtracting this from:

$$
c_{1} \chi_{n}(h) \chi_{1}(g)+\cdots+c_{n} \chi_{n}(h) \chi_{1}(g)=\chi_{n}(h)\left(c_{1} \chi_{1}(g)+\cdots+c_{n} \chi_{n}(g)\right)=0
$$

we get linear relations among the first $n-1$ characters (one for each value of h):

$$
c_{1}\left(\chi_{n}(h)-\chi_{1}(h)\right) \chi_{1}+\cdots+c_{n-1}\left(\chi_{n}(h)-\chi_{n-1}(h)\right) \chi_{n-1}=0
$$

which implies (by the inductive assumption) that:

$$
c_{i}\left(\chi_{n}(h)-\chi_{i}(h)\right)=0 \text { for all } i=1, \ldots, n-1 \text { and all } h
$$

But $\chi_{i} \neq \chi_{n}$ for $i<n$, so $\chi_{i}(h) \neq \chi_{n}(h)$ for some h (possibly depending on i), from which it follows that $c_{1}, \ldots, c_{n-1}=0$ and then $c_{n}=0$ as well.

Example. Consider n characters of \mathbb{Z} in K given by $\chi_{i}(1)=x_{i}$ for distinct $x_{i} \in K^{*}$. Then the truncated character vectors $\chi_{i}(0) e_{0}+\ldots .+\chi_{i}(n-1) e_{n-1}$ are columns of:

$$
V\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{n} \\
x_{1}^{2} & x_{2}^{2} & \cdots & x_{n}^{2} \\
& & \vdots & \\
x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1}
\end{array}\right]
$$

the Vandermonde matrix with (nonzero!) determinant $D=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)$. This independently verifies that any finite set of characters of \mathbb{Z} is independent.

If we take, instead, the n characters of C_{n} in \mathbb{C} with $\chi_{i}(1)=\omega^{i}$, we get:

$$
D=\prod_{0 \leq i<j<n}\left(\omega^{j}-\omega^{i}\right) \in \mathbb{Q}(\omega)
$$

as the determinant of the Vandermonde. This can be computed! From:

$$
f(x)=x^{n}-1=\prod_{i=0}^{n-1}\left(x-\omega^{i}\right) \text { we get } n x^{n-1}=f^{\prime}(x)=\sum_{i=0}^{n-1} \prod_{i \neq j}\left(x-\omega^{i}\right)
$$

and in particular, $n\left(\omega^{j}\right)^{n-1}=\prod_{i \neq j}\left(\omega^{j}-\omega^{i}\right)$. Thus the product satisfies:

$$
n^{n} \cdot \omega^{(n-1)\binom{n}{2}}=\prod_{j=0}^{n-1} n\left(\omega^{j(n-1)}\right)=\prod_{i \neq j}\left(\omega^{j}-\omega^{i}\right)=(-1)^{\binom{n}{2}} D^{2}
$$

so that in particular, if n is odd:

$$
D= \pm \sqrt{(-1)^{\binom{n}{2}} n^{n}} \in \mathbb{Q}\left(\omega_{n}\right)
$$

and as a consequence, $\sqrt{(-1)^{\binom{n}{2}} n} \in \mathbb{Q}\left(\omega_{n}\right)$, generating an intermediate "quadratic" field (as long as $(-1){ }^{\binom{n}{2}} n$ is not a perfect square) corresponding to a subgroup of the Galois group of order $\phi(n) / 2$. This "explains" the appearances of $\sqrt{-3}, \sqrt{5}$ and $\sqrt{-7}$ in the fields $\mathbb{Q}\left(\omega_{3}\right), \mathbb{Q}\left(\omega_{5}\right)$ and $\mathbb{Q}\left(\omega_{7}\right)$, respectively.

Corollary. If G is an abelian group with $|G|=n$, then G has at most n characters with values in a field K and exactly n characters with values in \mathbb{C}.

Proof. $\operatorname{Fun}(G, K)$ has dimension n as a vector space over K, so there are at most n distinct characters by the Proposition. Letting $G=\prod C_{n_{i}}$ be a product of cyclic groups with generators g_{i} and $\prod n_{i}=n$, then setting each g_{i} to an n_{i} th root of unity in \mathbb{C} determines a distinct character, and there are n of them.

Now let F / K be a splitting field for a separable $f(x) \in K[x]$, and consider:

$$
\sigma: F \rightarrow F \text { for } \sigma \in \operatorname{Gal}(F / K)
$$

Then in particular σ is a character of the group F^{*} in the field F. Thus any finite collection of distinct elements of the Galois group is independent, and we have:
Corollary. The fixed field F^{S} of a subset $S=\left\{\sigma_{1}, \ldots, \sigma_{m}\right\} \subset \operatorname{Gal}(F / K)$ satisfies

$$
\left[F: F^{S}\right] \geq m
$$

with equality if S is a subgroup of the Galois group.
Proof. Let $\alpha_{1}, \ldots, \alpha_{r} \in F$ be a basis for F as a vector space over F^{S}.
If $\left[F: F^{S}\right]=r<m$, then the r equations in m unknowns:

$$
\left(*_{j}\right) \sigma_{1}\left(\alpha_{j}\right) x_{1}+\cdots+\sigma_{m}\left(\alpha_{j}\right) x_{m}=0
$$

have a common non-zero solution $\left(c_{1}, \ldots ., c_{m}\right)$ with $c_{i} \in F$ so $\sum_{i=1}^{r} c_{i} \sigma_{i}\left(\alpha_{j}\right)=0$ for all basis vectors α_{j}.

But then $\sum_{i=1}^{n} c_{i} \sigma_{i}(\alpha)=0$ for all $\alpha=\sum a_{i} \alpha_{i} \in F$ (with $a_{i} \in F^{S}$) since each $\sigma_{i} \in \operatorname{Gal}(F / K)$ is a field automorphism of F (fixing F^{S}). This violates the independence of the characters σ_{i} of F^{*} in F and so by the Proposition, $r \geq m$.

Now if S is a group and $\left[F: F^{S}\right]>m$, let $\alpha_{1}, \ldots, \alpha_{m+1}$ be independent vectors in F as a vector space over F^{S} and consider the m equations:

$$
\left(\dagger_{i}\right) \quad \sigma_{i}\left(\alpha_{1}\right) y_{1}+\cdots+\sigma_{i}\left(\alpha_{m+1}\right) y_{m+1}=0 \text { in } m+1 \text { variables }
$$

As above, this system of equations has a common non-zero solution $\left(b_{1}, \ldots, b_{m+1}\right)$ with $b_{j} \in F$. Among all such solutions, we choose one with the smallest number of non-zero entries and reorder the α_{j} (if necessary) so $\left(b_{1}, \ldots . ., b_{s}, 0, \ldots ., 0\right)$ is a minimal solution, with $b_{1}, \ldots, b_{s} \neq 0$, and dividing through by b_{s}, we may assume $b_{s}=1$.

Since S is a group, we have $\operatorname{id}_{F} \in S$, and so among these equations we have:

$$
\sum \operatorname{id}_{F}\left(\alpha_{j}\right) b_{j}=\sum b_{j} \alpha_{j}=0
$$

from which we conclude that at least one of the b_{j} is outside of the fixed field F^{S} (otherwise the α_{j} would be linearly dependent vectors). Reordering again if needed, we may assume $b_{1} \notin F^{S}$. Thus there is some $\sigma \in S$ so that $\sigma\left(b_{1}\right) \neq b_{1}$, and then:

$$
0=\sigma\left(\sum_{j=1}^{s} \sigma_{i}\left(\alpha_{i}\right) b_{i}\right)=\sum_{j=1}^{s}\left(\sigma \circ \sigma_{i}\right)\left(\alpha_{j}\right) \cdot \sigma\left(b_{j}\right)
$$

for all σ_{i}. But because S is a group, the $\sigma \circ \sigma_{i}$ are simply a reordering of the elements of S, and so the equation above gives another solution:

$$
\left(\sigma\left(b_{1}\right), \ldots, \sigma\left(b_{s}\right), 0, \ldots, 0\right) \text { with } \sigma\left(b_{s}\right)=\sigma(1)=1 \text { and } \sigma\left(b_{1}\right) \neq b_{1}
$$

so subtracting one solution from the other gives a solution with fewer non-zero entries, and a contradiction to the assumption that $\left[F: F^{S}\right]>m$.

Corollary. If $H_{1}, H_{2} \subset \operatorname{Gal}(F / K)$ are subgroups with $F^{H_{1}}=F^{H_{2}}$, then $H_{1}=H_{2}$.
Proof. Let $E=F^{H_{1}}=F^{H_{2}}$. By the previous Corollary, $\left|H_{1}\right|=\left|H_{2}\right|=[F: E]$. Moreover, if $H_{1} \neq H_{2}$, then there is an $h \in H_{1}$ that is not in H_{2}. But then by the Corollary:

$$
\left[F: F^{H_{2} \cup\{h\}}\right]>\left|H_{2}\right|=[F: E]
$$

so h does not fix some element of E, giving a contradiction.
We may now prove parts (a) and (b) of the Theorem at the top of this section.
(a) Recall that $G=\operatorname{Gal}(F / K)$ has order equal to $[F: K]$. It follows that

$$
F^{G}=K
$$

since $K \subset F^{G}$ and $|G|=\left[F: F^{G}\right]$ from the second Corollary.
We may apply this to any subgroup $H \subset G$ with fixed field F^{H} to get:

$$
F^{H}=F^{\mathrm{Gal}\left(\mathrm{~F} / \mathrm{F}^{\mathrm{H}}\right)}
$$

(letting F^{H} play the role of K), and then from the last Corollary, $H=\operatorname{Gal}\left(F / F^{H}\right)$.
(b) Starting with an intermediate field $E \subset F$, we have:

$$
E \subset F^{\operatorname{Gal}(F / E)}
$$

and $\left[F: F^{\operatorname{Gal}(F / E)}\right]=|\operatorname{Gal}(F / E)|=[F: E]$, so we must have equality!
Now for the third part of the Theorem, notice that conjugating subgroups of the Galois group has the effect of moving from one intermediate field to another:

$$
\begin{aligned}
H \subset G= & \operatorname{Gal}(F / K) \text { with } F^{H}=E \subset F \text { and } g \in G \text { give } \\
& g H g^{-1} \subset G \text { with } F^{g H g^{-1}}=g E \subset F
\end{aligned}
$$

and so $H \subset G$ is a normal subgroup if and only if $E=g E$ for all $g \in G$. So we need to show that every subfield $E \subset F$ fixed by the Galois group is a splitting field.
Proposition 2. Let K be an infinite field, and let F / K be a splitting field of a separable polynomial $f(x) \in K[x]$. Then:
(a) F / K is separable as a field extension.
(b) For each $\beta \in F$ with associated irreducible polynomial $h(x)$, the field F contains all the roots of $h(x)$. Thus, F contains a splitting field E / K of $h(x)$.
(c) Every subfield of F fixed by the Galois group of F / K is a splitting field.

Proof. Note that (a) is automatic if K is a perfect field. Let's assume (a), putting off the case where K is imperfect. Then the roots of $h(x)$ contained in F are distinct. If G is the Galois group of F / K, then either $\beta=\beta_{1} \in K$ and $h(x)$ is linear, or else $\beta_{2}=g \beta_{1} \neq \beta_{1}$ for some $g \in G$, which finds us another root.

If $h(x)$ has two roots $\beta_{1}, \beta_{2} \in F$ that are permuted by every element of G, then

$$
\beta_{1}+\beta_{2} \text { and } \beta_{1} \beta_{2} \text { are both elements of } K
$$

since they are fixed by every element of the Galois group! Thus:

$$
\left(x-\beta_{1}\right)\left(x-\beta_{2}\right)=x^{2}-\left(\beta_{1}+\beta_{2}\right) x+\beta_{1} \beta_{2} \in K[x]
$$

is the (irreducible) polynomial $h(x)$. Thus if $h(x)$ has more roots, then elements of G cannot all permute the set $\left\{\beta_{1}, \beta_{2}\right\}$, and there must be a new root $g \beta_{i}=\beta_{3}$.

We may proceed in this way, noticing that if G permutes a set of known roots $\left\{\beta_{1}, \ldots, \beta_{d}\right\}$ then $h(x)$ is the product $\prod_{i=1}^{d}\left(x-\beta_{i}\right)$, otherwise there is another root of $h(x)$ obtained as $\beta_{i+1}=g \beta_{i}$ for one of the "known" roots. This gives (b).

For (c), let $K \subset E \subset F$ be a fixed subfield. Notice that there are only finitely many intermediate fields $K \subset L \subset F$ between K and F since there are only finitely many subgroups $H \subset G$ of the Galois group! Thus, there are only finitely many intermediate fields properly contained in E, and so if K is infinite, then there is an $\alpha \in E$ that is not in any proper subfield of E. Then, remarkably,

$$
K(\alpha)=E
$$

and in particular, E is the splitting field of the polynomial $g(x)$ associated to α.
In fact, the last thing said is so remarkable that it is spawns a theorem.
The Theorem of the Primitive Element. If $K \subset L$ is any finite, separable extension of an infinite field then there is a "primitive" element α so that $L=K(\alpha)$.

Proof. Let $L=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and let $f_{1}(x), \ldots, f_{n}(x) \in K[x]$ be (separable) irreducible polynomials for $\alpha_{1}, \ldots, \alpha_{n}$. Then L is a subfield of a splitting field F / K for $f(x)=\prod f_{i}(x)$. But F has finitely many subfields containing K, corresponding to the subgroups of the Galois group of F / K, and in particular L has only finitely many subfields containing K. These are sub-vector spaces, and a vector space over an infinite field cannot be covered by finitely many proper subspaces, so L contains an element α outside all the subfields, which tells us that $L=K(\alpha)$.

We've made assumptions in the proof of the Proposition that we should address.

- We assumed K was infinite in the proof of (c).
- We assumed K was perfect to avoid proving (a).

Finite Fields. When $K=\mathbb{F}_{q}$ is a finite field with $q=p^{r}$ elements, the Proposition and the Theorem of the Primitive Element are still true. Of course, these fields are perfect, so (a) is automatic. The field F is isomorphic to $\mathbb{F}_{q^{d}}$ for some d, and

$$
\mathbb{F}_{q} \subset \mathbb{F}_{q^{d}} \text { has a cyclic Galois group, isomorphic to } C_{d}
$$

The finitely many intermediate fields:

$$
\mathbb{F}_{q} \subset \mathbb{F}_{q^{e}} \subset \mathbb{F}_{q^{d}}
$$

are the fixed fields of the subgroups $C_{e} \subset C_{d}$. They are all splitting fields, and the subgroups are all normal. As for the primitive element, we may take any of the generators of the cyclic group $\mathbb{F}_{q^{d}}^{*}$.

Turning back to (a) in the Proposition, we prove the more general:
Proposition 3. Let $K \subset L$ be a field extension. Then the elements $\alpha \in L$ that are (algebraic and) separable over K form an intermediate "separable extension"

$$
K \subset L_{\mathrm{sep}} \subset L
$$

Proof. Let $0 \neq \alpha, \beta \in L$ be separable over K with associated polynomials $f(x), g(x) \in K[x]$. Then the polynomial $f(-x)$ has distinct roots $-\alpha_{i}$, where α_{i} are the roots of $f(x)$, so $-\alpha$ is also separable.

Similarly, $x^{\operatorname{deg}(f)} f(1 / x)$ has distinct roots $1 / \alpha_{i}$, so $1 / \alpha$ is separable over K.

To prove that the sum and product $\alpha+\beta$ and $\alpha \beta$ are separable over K, consider the three intermediate fields between K and $K(\alpha, \beta)$:

$$
K \subset K(\alpha), K(\alpha+\beta), K(\alpha \beta) \subset K(\alpha, \beta)
$$

Following the separable path $K \subset K(\alpha) \subset K(\alpha, \beta)$, we get:

$$
\left|\operatorname{Iso}_{K}(K(\alpha, \beta), K(\alpha, \beta))\right|=[K(\alpha, \beta): K]=[K(\alpha, \beta): K(\alpha)] \cdot[K(\alpha): K]
$$

from Proposition 1 (of the previous section). But conversely, note that:

$$
\left|\operatorname{Iso}_{K}(K(\gamma), K(\gamma))\right|<[K(\gamma): K]
$$

if γ is not separable over K, since the polynomial for γ has coincidental roots. Thus, following the other paths:

$$
K \subset K(\alpha+\beta) \subset K(\alpha, \beta) \text { and } K \subset K(\alpha \beta) \subset K(\alpha, \beta)
$$

we conclude that $\alpha+\beta$ and $\alpha \beta$ are separable over K.
Proposition 2 (a) follows from the special case of F / K, the splitting field of $f(x)$, since $F=K\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ is generated by the roots of $f(x)$, and so $F_{\text {sep }}=F$ and every element of F is separable over K.

In a complementary direction, consider a splitting field F / K of $f(x)$, and let:

$$
K \subset F_{\text {insep }}=F^{\mathrm{Gal}(F / K)} \subset F
$$

be the fixed field of the Galois group $\operatorname{Iso}_{K}(F, F)$. This fixed field is equal to K by the foundational theorem if $f(x)$ is separable, but not otherwise. In fact, each $\alpha \in F_{\text {insep }}$ is "purely inseparable" over K, i.e. its polynomial has a single root.
Example. The splitting field F of the polynomial

$$
f(x)=x^{2 p}-x^{p}-t \in \mathbb{F}_{p}(t)[x]
$$

has Galois group C_{2} and two intermediate extensions, namely:
$F_{\text {sep }}=\mathbb{F}_{p}(t)(\alpha)$ where α is a root of $x^{2}-x-t$, and
$F_{\text {insep }}=\mathbb{F}_{p}(t)(\sqrt[p]{t})$, which turns $f(x)$ into $\left(x^{2}-x-\sqrt[p]{t}\right)^{p}$.
Definition. K is algebraically closed if there is no finite field extension $K \subset L$.
Equivalently, K is algebraically closed if each $f(x) \in K[x]$ factors "completely:"

$$
f(x)=c \prod\left(x-\alpha_{i}\right) \text { for } c, \alpha_{i} \in K
$$

Fundamental Theorem of Algebra. \mathbb{C} is algebraically closed.
Proof. First of all, given $f(x) \in \mathbb{C}[x]$, consider the real polynomial:

$$
f(x) \bar{f}(x) \in \mathbb{R}[x]
$$

where $\bar{f}(x)$ is the complex conjugate polynomial.
Then from a factorization of $f(x) \bar{f}(x)$ we obtain factorizations of $f(x)$ and $\bar{f}(x)$. Thus it suffices to show that each $g(x) \in \mathbb{R}[x]$ factors completely in $\mathbb{C}[x]$.

Next, by the intermediate value theorem and the quadratic formula:

- Each polynomial $g(x) \in \mathbb{R}[x]$ of odd degree has a (real) root
- Each quadratic polynomial in $\mathbb{C}[x]$ has a complex root.

These have the following field-theoretic consequences:

- Each non-trivial finite field extension $\mathbb{R} \subset E$ has even degree.
(otherwise each $\alpha \in E-\mathbb{R}$ would give an extension $\mathbb{R} \subset \mathbb{R}(\alpha)$ of odd degree with irreducible polynomial $f(x)$ of odd degree).
- There is no field extension $\mathbb{C} \subset L$ of degree two.

For each $g(x) \in \mathbb{R}[x]$, let F / \mathbb{R} be a splitting field for $\left(x^{2}+1\right) g(x)$.
Let $G=\operatorname{Gal}(F / \mathbb{R})$ with $|G|=2^{d} m$, and let $E=F^{H}$ be the fixed field of one of the 2-Sylow subgroups $H \subset G$. Then:

$$
\operatorname{Gal}(F / E)=H \text { and so }[E: \mathbb{R}]=m \text { is odd }
$$

But this is impossible unless $E=\mathbb{R}$, so $m=1$ and G is a 2-group.
In that case, the splitting intermediate subfield:

$$
\mathbb{R} \subset \mathbb{C}=\mathbb{R}(i) \subset F\left(\text { from the root of } x^{2}+1\right)
$$

has Galois group $N=\operatorname{Gal}(F / \mathbb{C}) \subset G$, which is a normal subgroup and a 2-group with $G / N=\operatorname{Gal}(\mathbb{C} / \mathbb{R})$. Moreover, F / \mathbb{C} is the splitting field of the polynomial $g(x)$.

If N is non-trivial, then by the super-solvability of p-groups, there is a normal subgroup $N^{\prime} \subset N$ with quotient $N / N^{\prime}=C_{2}$, and then:

$$
\mathbb{C}=F^{N} \subset F^{N^{\prime}}
$$

is a field extension of degree two. But this is impossible, so $N=\{e\}$, which is to say that \mathbb{C} itself is the splitting field of $g(x)$, i.e. all the roots of $g(x)$ are in \mathbb{C} !

The complex numbers thus give us the algebraic closure

$$
\overline{\mathbb{Q}}=\{\alpha \in \mathbb{C} \mid \alpha \text { is algebraic over } \mathbb{Q}\}
$$

which is a minimal field containing all splitting fields of all polynomials in $\mathbb{Q}[x]$.
Remark. Finite fields also have algebraic closures. We will investigate this later.
In fact, every field has an algebraic closure.

