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Group Actions

Let X be a set and G be a group.

Definition. An action of G on X is a mapping:

· : G×X → X

such that e · x = x for all x ∈ X, and (g1g2) · x = g1 · (g2 · x) for all g1, g2 ∈ X.

Proposition 1. An action of G on X is the same thing as a group homomorphism:

a : G→ Perm(X)

Proof. For each g ∈ G, the mapping:

g· : X → X; x 7→ g · x
is a permutation (bijection) with inverse g−1· since g−1 ·(g ·x) = (g−1g)·x = e·x = x
and the conditions show that it is a group homomorphism. Conversely, given a
group homomorphism a : G→ Perm(X), g 7→ ag, let g ·x = ag(x). Then this is an
action of G on X since ag1 ◦ ag2 = ag1g2 and ae = 1X .

Examples. (a) Left and right multiplication (the latter by g−1, as discussed earlier)
are actions of G on itself.

(b) Conjugation is an action of G on itself that is also a map c : G→ AutGr(G).

(c) Let H ⊂ G be a subgroup. Then cg(H) is also a subgroup of G (by (b)), and
conjugation determines an action:

c : G→ Perm({H ⊂ G})
on the set of subgroups of G.

(d) By definition, GL(n, k) = Aut(kn) in the category of vector spaces, so:

GL(n, k)× V → V where V = kn

is an action of GL(n, k) on V . But invertible linear maps also take subspaces of kn

to subspaces of kn (of the same dimension). Thus, if we let

Gr(m,n)

be the “Grassmann” set of subspaces of kn of dimension m, then we get an action:

GL(n, k)× Gr(m,n)→ Gr(m,n)

Remark. The Grassmannian Gr(m,n) is a projective variety of dimensionm(n−m),
and if k = R or C, then it is a compact manifold. Moreover, this action has more
structure. It is “algebraic” in the sense of algebraic geometry.

Definition. (a) The orbits of an action G×X → X are the sets:

Gx = {gx ∈ X | g ∈ G} for x ∈ X

(b) The stabilizer of x ∈ X given an action G×X → X is the subgroup:

Gx = {g ∈ G | gx = x}
Proposition 2. Let G act on X and x ∈ X. Then there is a bijection:

{gGx| g ∈ G} ←→ Gx

between the left cosets of the stabilizer group of x and the points of the orbit of x.
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Proof. The map from cosets to the orbit is gGx 7→ g · x. This is
• Well-defined, since (gh) · x = g · (h · x) = g · x for all h ∈ Gx.

• Surjective (this is obvious), and

• Injective, since g · x = g′ · x if and only if g−1 · g′ ∈ Gx, i.e. gGx = g′Gx.

Corollary. For x ∈ X and an action of G on X, we have:

|G| = |Gx| · |G/Gx| = |Gx| · |Gx|
Examples. Conjugacy classes are the orbits of the conjugation action of G on itself
(so |Cl(h)| divides |G| for finite groups), and if H ⊂ G is a subgroup, then the
orbits of the action of H on G by right multiplication are the left(!) cosets gH.

The Class Formula. For a finite group G acting on a finite set X,

|X| = #{singleton orbits}+
∑

|Gxi|>1

|Gxi| = #{singleton orbits}+
∑
|G|/|Gxi |

where a representative xi is chosen from each orbit. In particular,

|G| = |Z(G)|+
∑
|Cl(hi)| = |Z(G)|+

∑
|G|/|CG(hi)|

where we let CG(h) ⊂ G be the “centralizer” of h, i.e. the group of elements g ∈ G
that commute with h.

Proof. The first formula simply counts the elements of X by partitioning them
into orbits under the action of G. The second formula is the special case of the
action of G on itself by conjugation, for which CG(h) is the stabilizer of h. □

Recall that the order of g ∈ G always divides |G|. We get a partial converse:

Cauchy’s Theorem. If p is a prime dividing |G|, then some g ∈ G has order p.

Proof. Suppose p divides n = |G|. Then by the class formula:

n = |Z(G)|+
∑
|G|/|CG(hi)|

By induction on n, we may assume that p does not divide the order of any of
the stabilizer subgroups CG(hi) ⊂ G, otherwise within CG(hi) there would be an
element of order p. Thus p divides each of the quotients |G|/|CG(hi)|.

But then p divides |Z(G)|, which is abelian, and by the classification of finite
abelian groups, there must be an element of Z(G) ⊂ G of order p. □

We may begin to classify some groups of various orders. Let p be a prime.

Corollary. (a) The only group with p elements is the cyclic group Cp.

(b) The only groups with p2 elements are the cyclic group and Cp × Cp.

Proof. (a) is immediate from Cauchy’s Theorem.

For (b), it suffices to show that G is abelian. But:

p2 = |Z(G)|+
∑
|G|/|CG(hi)|

shows that Z(G) ̸= {e}, and if |Z(G)| = p (it has to divide p2), then there is an
element h ̸∈ Z(G) with |CG(h)| = p. But Z(G) ⊂ CG(h) (always) and h ∈ CG(h),
which accounts already for p + 1 elements, giving a contadiction to |Z(G)| = p.
Thus |Z(G)| = p2, and G is abelian.



3

Example. This analysis does not extend to p3, since, for example, the dihedral
group D8 of symmetries of the square is not abelian. It also does not extend to
(all) groups of order pq for distinct primes p and q, since S3 is not abelian.

We can, however, say something interesting about groups with pd elements.

Definition. A group G with |G| = pd is called a p-group.

Definition. A group G is solvable there is a chain of subgroups:

0 = H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hr = G

such that each Hi is normal in Hi+1 and Hi+1/Hi is cyclic of prime order. Such a
chain is called a composition series of the solvable group.

Remark. Solvable groups will be important in Galois Theory.

Examples. (a) All abelian groups are solvable (by the classification).

(b) The group S3 is solvable, with series 0 ⊂ A3 ⊂ S3.

(c) The group S4 is solvable, with series 0 ⊂ C2 ⊂ K4 ⊂ A4 ⊂ S4, where C2 is
any of the three cyclic subgroups of the Klein group.

(d) The dihedral group D2n of symmetries of a regular n-gon is solvable via
Cn ⊂ D2n the cyclic subgroup of rotational symmetries.

Proposition 3. Each p-group is solvable.

Proof. We prove more. As in the Corollary above, if H is a p-group, then:

|H| = pd = |Z(H)|+
∑
|H|/|CG(hi)|

shows that the center Z(H) is a non-trivial abelian p-group, all of whose subgroups
are therefore normal subgroups of G. Thus we can find a normal cyclic subgroup
Cp ⊂ H. Then by the First Isomorphism Theorem, we get:

1→ Cp → H
q→ H/Cp → 1

and then H/Cp contains a normal cyclic subgroup C ′
p whose inverse image q−1C ′

p

is H1, etc. In fact, each Hi in the composition series constructed in this way is a
normal subgroup of H, and not just of Hi+1. This is “super”-solvable!

The p-groups are ubiquitous in group theory, because of the Sylow Theorems.

First Sylow Theorem. If |G| = pdm and gcd(m, p) = 1, then there is a subgroup

H ⊂ G with |H| = pd (the maximal possible power of p)

This subgroup H is called a p-Sylow subgroup of G.

Let S be the (non-empty) set of p-Sylow subgroups of G.

Second Sylow Theorem. The action of G on S by conjugation is transitive, i.e.
it has only one orbit. Thus, in particular, |S| divides |G|.

Let H ⊂ G be a p-Sylow subgroup.

Third Sylow Theorem. The action of H on S by conjugation fixes H and no
other p-Sylow subgroup. Thus, by the class formula,

|S| ≡ 1 (mod p)

and together with the Second Sylow Theorem, we conclude that |S| divides m.
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Proofs. The first Sylow theorem is a generalization of Cauchy’s Theorem, and
we prove it similarly, by induction on n. We start, as usual, with the class formula:

pdm = |G| = |Z(G)|+
∑
|G|/|CG(hi)|

First off, if p does not divide |Z(G)|, then pd must divide one of the stabilizer
subgroups |CG(hi)| (otherwise p would divides all quotients |G|/|CG(hi)|, giving a
contradiction). But then by induction on n, we know that CG(hi) has a p-Sylow
subgroup H with |H| = pd, which is then also a p-Sylow subgroup of G.

If p does divide |Z(G)|, then by Cauchy’s Theorem there is an element of the
center Z(G) of order p, hence a normal cyclic subgroup Cp ⊂ Z(G) ⊂ G. By the
First Isomorphism Theorem, we obtain a quotient group:

q : G→ G/Cp of order pd−1m

which (by induction) has a p-Sylow subgroup H ⊂ G/Cp with pd−1 elements. But
then q−1(H) ⊂ G is a subgroup with pd elements, i.e. a p-Sylow subgroup of G.

For the second theorem, we fix p-Sylow subgroups H,H ′ ∈ S and consider the
action of H on the set of left cosets G/H ′ = {gH ′} of H ′ by left multiplication.
This set has size m, relatively prime to p, so by the class formula, it follows that
there is a singleton orbit of the action (the size each orbit is a power of p). Thus,
there is a left coset gH ′ such that:

h(gH ′) = gH ′ and so (g−1hg)H ′ = H ′ for all h ∈ H, i.e. g−1Hg ⊂ H ′

ButH andH ′ have the same order, so g−1Hg = H ′ (andH ′ was arbitrarily chosen).

Finally for the third theorem, we fix a p-Sylow group H, and consider the action
H → Perm(S) by conjugation. Then by the class formula,

|S| = #{singleton orbits}+
∑
|H|/|NH(Hi)|

where NH(Hi) ⊂ H is the normalizer subgroup of elements h with hHih
−1 = Hi.

And since |H| = pd, the size of every non-singleton orbit is divisible by p.

So it suffices to show that H is the unique Sylow subgroup normalized by H.

Suppose H ′ ̸= H is normalized by H and choose h ∈ H outside of H ′. Notice
that as in the proof of the First Isomorphism Theorem, as a consequence of the
fact that h normalizes H ′, we get:

hH ′ = H ′h and so the left cosets {H ′, hH ′, h2H ′, ...., hr−1H ′}
are a cyclic group, with hr = h′ ∈ H ′ (for r minimal). But the order of h′ ∈ H ′ is
pk for some k (since it divides |H ′|), and likewise the order of h is pl for some l, so
r = pl−k is also a power of p, and the group generated by h and H ′:

⟨h,H ′⟩ = {hig | 0 ≤ i ≤ r − 1, g ∈ H ′} ⊂ G

consists of pl−k|H| elements, which is a larger power of p, and a contradiction. □

As a numerical consequence, we get the existence of normal Sylow subgroups.

Corollary. If |G| = pdm with m > 1, and

a ̸≡ 1 (mod p)

for all factors a of m (other than 1), then the p-Sylow subgroup H ⊂ G is normal.

Definition. A group G is simple if its only normal subgroups are {e} and G.
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Example. The cyclic groups Cp for primes p are the only simple abelian groups.

One might be forgiven for wondering whether there are any simple groups other
than the cyclic groups of prime order. We will use the Sylow theorems and some
cleverness to support this (wrong) hypothesis with some data:

All the simple groups of order n < 60 are cyclic. The p-groups are either
of order p and cyclic or they are solvable (and not simple). Also, if n = pdm and
m < p, then all divisors of m are smaller than p and so (except for 1) cannot be
congruent to 1 mod p. So the p-Sylow subgroup is normal by the Corollary above.
This leaves the following orders of groups that might be simple:

12, 24, 30, 36, 40, 45, 48, 56

Cancelling 40 and 45. This also follows directly from the Corollary above:

• 40 = 5 · 8 and 8, 4, 2 ̸≡ 1 (mod 5), so there is a normal 5-Sylow subgroup in
every group with 40 elements.

• 45 = 5 · 9 and 9, 3 ̸≡ 1 (mod 5) and 45 = 32 · 5 and 5 ̸≡ 1 (mod 3) so there are
a normal 5-Sylow subgroup and 3-Sylow subgroup in every group with 45 elements.

Cancelling 12, 30 and 56. This follows from counting elements.

• 30 = 2 · 3 · 5, so if G is simple and |G| = 30, then G has:

6 (cyclic) Sylow subgroups of order 5 accounting for 6 × 4 + 1 = 25 elements
since they only overlap in the identity element.

10 (cyclic) Sylow subgroups of order 3, accounting for 10×2 = 20 more elements
since the other divisors of 10 are 5 and 2, which are not congruent to 1 mod 3.

But 25 + 20 = 45 > 30 is too many elements, so we have a contradiction.

• 12 = 3 · 4 = 22 · 3, so if G is simple and |G| = 12, then G has:

4 (cyclic) Sylow subgroups of order 3, accounting for 4× 2 + 1 = 9 elements.

3 Sylow subgroups of order 4, accounting for at least 3 + 1 = 4 more elements.

This gives at least 9 + 4 = 13 > 12 elements, and a contradiction.

Note that the alternating group A4 has 4 Sylow subgroups of order 3 and the
Klein subgroup K4 as the unique Sylow subgroup with 4 elements.

• 56 = 7 · 8 = 23 · 7, so if G is simple and |G| = 56, then G has:

8 (cyclic) Sylow subgroups with 7 elements, accounting for 8×6+1 = 49 elements.

7 Sylow subgroups with 8 elements, accounting for at least 7 + 1 = 8 more.

And 49 + 8 = 57 > 56.

Cancelling 24, 36 and 48 by acting on a set of Sylow subgroups.

• 48 = 24 ·3, so if G is simple and |G| = 48, then G has three 2-Sylow subgroups,
and conjugation acts non-trivially (in fact transitively) on the set S of these groups,
which therefore defines a non-trivial group homomorphism: a : G→ Perm(S) = S3

But |S3| = 6 < 48 so a cannot be injective, and the kernel is a normal subgroup!

• 36 = 32·4, so if |G| = 36 andG is simple, then there are four 3-Sylow subgroups.
But then the conjugation action gives G → Perm(S) = S4 and 36 > 4! = 24 and
the kernel is a normal subgroup.
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• 24 = 3 · 8 = 23 · 3 so if G is simple, then G has:

3 Sylow subgroups with 8 elements, and

4 Sylow subgroups with 3 elements (since 8, 2 ̸≡ 1 (mod 3)).

Interestingly, the group S4 does have this number of each. The Sylow subgroups
with 8 elements are the three D8 subgroups of S4 and the Sylow subgroups with
3 elements correspond to the four ways to choose three elements from [4]. But in
any case, letting S be the set of three Sylow subgroups with 8 elements, we get:

a : G→ Perm(S) = S3

giving a normal (non-Sylow!) subgroup of G. In the case G = S4, this is our map
onto S3 (thinking of S4 as the symmetries of the cube acting on short diagonals),
and the kernel is the Klein four group, which we noted is normal in S4.

When we pass to |G| = 60, none of these tricks work. If G is simple, there are:

6 (cyclic) Sylow subgroups with 5 elements, contributing 6×4+1 = 25 elements.

10 (cyclic) Sylow subgroups with 3 elements, contributing 10× 2 = 20 more.

15, 5 or 3 Sylow subgroups with 4 elements. There can’t be 3 by the last trick,
since 3! < 60, and 15 seems like too many, but there could certainly be five of them.

Looking at the alternating group A5, we find indeed that it has:

6 Sylow subgroups with 5 elements, corresponding to the fact that there are
exactly 24 = 4! elements of A4 of order 5.

10 Sylow subgroups with 3 elements, corresponding to the fact that there are
exactly 20 =

(
5
3

)
× 2 = 20 elements of A4 of order 3

5 Klein subgroups coresponding to the 5 four element subsets of [5].

And indeed, A5 is simple. In fact, we have:

Theorem. The alternating groups An are simple for all n ≥ 5.

Before we tackle this, consider the conjugacy classes of An for small values of n.
These are obviously related to the conjugacy classes of Sn. In fact,

Proposition 4. Let N ⊂ G be a normal subgroup. Then for each h ∈ N ,

|ClN (h)| divides |ClG(h)| and
|ClG(h)|
|ClN (h)|

divides
|G|
|N |

where ClN (h) is the conjugacy class of h in N .

Proof. By the orbit-stabilizer product formula, we have:

|N | = |ClN (h)| · |CN (h)| and |G| = |ClG(h)| · |CG(h)|

and the centralizer groups satisfy: CN (h) = CG(h) ∩N , so we have:

|ClG(h)|
|ClN (h)|

=
|G|/|N |

|CG(h)|/|CN (h)|
=

|G|/|N |
|CG(h)|/|CG(h) ∩N |

and the result follows from the second isomorphism theorem for groups applied to
the normal subgroup N ⊂ G and the group H = CG(h).
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Second Isomorphism Theorem. Let H,N ⊂ G be subgroups with N normal.
Then H ∩N ⊂ H is normal, HN = {hn |h ∈ H,n ∈ N} ⊂ G is a subgroup, and:

H/(H ∩N) ∼= (HN)/N ⊂ G/N

Proof. (Exercise)

Applying the Proposition to An ⊂ Sn, we see if h ∈ An, then either:

|ClAn
(h)| = |ClSn

(h)| or else 2|ClAn
(h)| = |ClSn

(h)|
i.e. either the conjugacy class is the same the one in Sn or it is half the size.

Conjugacy Classes in A3, A4, A5 other than the trivial class {e}
A3

This is cyclic, so {(1 2 3)} and {(1 3 2)} are conjugacy classes. We also knew
that the conjugacy class of two elements for S3 had to split in half because |A3| = 3
and the size of a conjugacy class (for A3) has to divide the order of the group!

A4

The conjugacy classes of S4 contained in A4 are:

|{(∗∗)(∗∗)}| = 3 and |{(∗ ∗ ∗)}| = 8

The first can’t split and the second has to because 8 does not divide |A4| = 12. So
there are four conjugacy classes in total, with 1, 3, 4, 4 elements.

A5

The conjugacy classes of S5 contained in A5 are:

|{(∗∗)(∗∗)}| = 15, |{(∗ ∗ ∗)}| = 20 and |{(∗ ∗ ∗ ∗ ∗)}| = 24

and keeping in mind that |A5| = 60, we see that the first cannot split, the third must
split, but the jury is out on the three-cycles. In fact, the class of three-cycles does
not split, as we see below, but even if it did, we may conclude that the conjugacy
classes of sizes 1, 15, 12, 12 and 20 (or hypothetically 10 and 10) already show that:

A5 is simple. A normal subgroup N ⊂ A5 is a union of conjugacy classes
including the identity class {e}. But none of the sums of sizes of conjugacy classes:
1 + 10, 1 + 12, 1 + 15, 1 + 10 + 10, 1 + 10 + 12, 1 + 12 + 12, 1 + 10 + 15, 1 + 12 + 15
divides 60 (and all other sums are > 30). So there is not normal subgroup.

Next, as promised, we have a three-cycle interlude:

Proposition 5. (a) The class {(∗ ∗ ∗)} ⊂ Sn does not split in An when n ≥ 5.

(b) Every element of An for n ≥ 3 is a product of three-cycles.

Proof. (a) Given three-cycles (a b c) and (i j k), suppose f◦(a b c)◦f−1 = (i j k).
Then either f ∈ An and there is nothing to do, or else f ̸∈ An is an odd permutation.
But since n ≥ 5, there is a two-cycle (l m) that commutes with (i j k), and replacing
f with (l m) ◦ f also conjugates (a b c) to (i j k) and is an even permutation.

(b) The product (a b c)(a b d) = (a c)(b d) shows that every product of a pair of
disjoint two-cycles is in the subgroup generated by three-cycles. If f ∈ An, then f
is a product of an even number of two-cycles. Grouping them in consecutive pairs,
we see that each pair either annihilates each other, multiplies to a three-cycle or
else is a pair of disjoint two-cycles (which we now see is a product of three-cycles).
So f is a product of three-cycles. □
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We now prove the theorem by induction on n.:

Proof. (for n ≥ 6). Suppose An−1 is normal and n ≥ 6. Let:

N ⊂ An be a normal subgroup

Then as in the second isomorphism theorem, if we consider An−1 ⊂ An, we have:

An−1 ∩N ⊂ An−1 is normal, and An−1N ⊂ An is a subgroup

Since An−1 is simple (by assumption), N ∩An−1 ⊂ An−1 is either:

(i) N ∩An−1 = {e}, and then

|NAn−1| = |N | · |An−1| divides |An|
Since |An/An−1| = n, it follows that |N | divides n. It is easy to see, however,

that when n ≥ 6, all the (non-trivial) conjugacy classes in An have more than n−1
elements, and so N = {e}.

(Interestingly, this counting argument fails for n = 4, which is why the normality
of A3 does not imply that A4 is normal. In fact, it feeds us the Klein conjugacy
class with three elements and tells us that A3 ·K4 = A4.)

(ii) An−1 ∩ N = An−1, so in particular, N contains a three-cycle, and then by
Proposition 5(a), N contains all three-cycles, and by Proposition 5(b), N = An.

Thus the only normal subgroups of An are {e} and An. That is, An is normal. □

For Further Sleuthing. The next non-cyclic simple group after the alternating
group A5 (of order 60) is not A6 (of order 360), but rather a group of order 168.
This is a group of projective linear transformations over a finite field, and is itself
part of another infinite collection of simple groups. If you are ambitious, you may
try to prove that there are no simple groups of order 60 < n < 168 other than the
cyclic groups, but you will run into some sizes (e.g. 90, 112 and 120), where our
current bag of tricks is inadequate to the task!


