HW #2 - MATH 6320 FALL 2024

DUE: MONDAY, JANUARY 31

1. (a) If $H \subset G$ is a subgroup and $f : G' \to G$ is a group homomorphism, show that $f^{-1}(H) \subset G'$ is a subgroup.

(b) If $N \subset G$ is a normal subgroup, show that $f^{-1}(N) \subset G'$ is normal.

2. Prove the Second Isomorphism Theorem for Groups:

If $H \subset G$ is a subgroup and $N \subset G$ is a normal subgroup, then:

 $\frac{H}{H \cap N}$ and $\frac{HN}{N}$ are isomorphic groups

(see the first problem set for much of what you need for this theorem)

3. If $H \subset G$ is a subgroup and |G/H| = m, show that:

(a) left multiplication:

$$l: G \to \operatorname{Perm}(G/H) \cong S_m; \ l(g) = l_q$$

is a transitive action and $H \subset G$ is the stabilizer of the coset $H \in G/H$.

(b) If $m \ge 3$, show that $l(G) \cap A_m \neq \{e\}$.

(c) If G is simple (i.e. G has no normal subgroups other than e and G), show that l is injective and $l(G) \subset A_m$, so

|G| divides $|A_m| = m!/2$, the order of the alternating group

4. Find all the subgroups of A_4 and specify which of them are normal.

5. Find an explicit surjective homomorphism:

$$f: S_4 \to S_3$$

i.e. tell me where f takes (1 2), where it takes (1 2 3), etc.

6.¹ Convince yourself that:

(i) A_4 is the group of rotational symmetries of the regular tetrahedron

(ii) S_4 is the group of rotational symmetries of the cube, and

(iii) A_5 is the group of rotational symmetries of the dodecahedron

¹not to be turned in