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Rings

Definition. A commutative ring with 1 (R,+, ·) is a set R with operations:

+ : R×R → R and · : R×R → R satisfying

(i) (R,+) is an abelian group (with identity 0 and additive inverse −r)

(ii) (R, ·) is associative with multiplicative identity 1 ̸= 0 and commutative, and

(iii) For each r ∈ R, the map:

r : (R,+) → (R,+); r(s) = r · s is a homomorphism

i.e. multiplication distributes with addition (and it follows∗ that r · 0 = 0).

In other words, R satisfies the field axioms except for multiplicative inverses.

Examples. (i) The model examples are the fields k and (Z,+, ·) the ring of integers.

(ii) Direct products (but not infinite direct sums!) of commutative rings with 1.

(iii) Given a commutative ring R with 1, then the ring of polynomials:

(R[x],+, ·)
is a commutative ring with 1, as are the rings of power series and Laurent series:

R[[x]] =

{ ∞∑
d=0

rdx
d | rd ∈ R

}
and R((x)) =

{ ∞∑
d=e

rdx
d | rd ∈ R, e ∈ Z

}

Note. If k is a field, then k((x)) (but not k[[x]]) is also a field∗.

Examples. The ring C[[z]] contains the subrings:

C[z] ⊂ Hol(C) ⊂ Hol(U) ⊂ Hol0 ⊂ C[[z]]
of entire holomorphic functions, holomorphic functions on an open set 0 ∈ U ⊂ C,
and holomorphic functions in some neighborhood of 0. The inclusions are strict∗.

Before we move to ideals, we visit a few non-commutative rings.

The Group Ring. Let R be a commutative ring with 1 and (G, ∗) be a group, Then:

R[G] = {
n∑

i=1

rigi}

the set of (formal) finite sums of elements in G with coefficients in R is a ring with:∑
rigi +

∑
sigi =

∑
(ri + si)gi and(∑

rigi

)
∗
(∑

sjhj

)
=

∑
i

∑
j

risj(gi ∗ hj)

Note that (R[G],+, ∗) is commutative if and only if G is abelian. For example,

R[Z] =

{
e∑

d=−e

rdx
d |e ∈ Z

}
is the ring of Laurent polynomials, and for a finite cyclic group (Cn, ∗),

R[Cn] = {r0 + r1x+ · · ·+ rn−1x
n−1 | xn = 1}

where x ∈ Cn is a generator (as in the case of the infinite cyclic group above).
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Endomorphism Rings. Let A be an abelian group. Then the ring of endomorphisms:

Endab(A) = {f : A → A}
(of A as an abelian group) is a ring with composition as the product, since:

(f ◦ (g + h))(a) = f(g(a) + h(a)) = (f ◦ g)(a) + (f ◦ h)(a)
(but composition rarely commutes). Recall that the ring of k-linear endomorphisms:

Mn×n(k) = Endvs(k
n)

is the ring of n× n matrices with matrix addition and multiplication.

Quaternions. The vector space R4 with basis {1, i, j, k} and multiplication:

i2 = j2 = k2 = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik

is the ring H of quaternions. It is not commutative, but:

(a+ bi+ cj + dk)(a− bi− cj − dk) = (a2 + b2 + c2 + d2)

is a nonzero real number whenever a+ bi+ cj + dk ̸= 0, and so, like a field, every
non-zero element of H has a (unique) multiplicative inverse. A non-commutative
ring with (left and right) multiplicative inverses is called a division ring.

Definition. A map f : R → S of rings with 1 is a ring homomorphism if:

(i) f(r1 + r2) = f(r1) + f(r2) for all r1, r2 ∈ R and f(0) = 0 (linear)

i.e. f is a homomorphism of additive abelian groups, and

(ii) f(r1r2) = f(r1)f(r2) for all r1, r2 ∈ R and f(1) = 1 (multiplicative)

Examples. (i) Evaluation at x = r is a ring homomorphism:

evr : R[x] → R; evr(f) = f(r)

and in the special case r = 0, we can extend this to the formal power series ring:

ev0 : R[[x]] → R; ev0(r0 + r1x+ · · · ) = r0

If we think of polynomials as functions from R to R, then this generalizes. Let
S be an nonempty set, and let

Fun(S,R) = {f : S → R} with pointwise addition and multiplication of functions.

Then evp(f) = f(p) defines an evaluation homomorphism to R.

(ii) The map from integers to the commutative ring:

(Z/nZ,+, ·) of integers mod n

given by f(r) = r (mod n) is a (surjective) ring homomorphism.

Nonexamples. (i) The derivative: d : C1(0, 1) → C(0, 1) is linear (and R-linear) but
not multiplicative (because of the Leibniz rule for products).

(ii) The determinant ∆ : End(kn) → k is multiplicative but not linear.

Image. The image f(R) of a homomorphism of commutative rings with 1 satisfies:

(a) if s1, s2 ∈ f(R), then s1 + s2 ∈ f(R) and −si ∈ f(R) (so 0 ∈ f(R))

(b) also, s1s2 ∈ f(R) and (by assumption) 1 ∈ f(R).

In other words, the image of a homomorphism is a subring (with 1).
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And of course, conversely, any subring with 1 of a commutative ring R is the
image of a homomorphism, namely the inclusion mapping (of the subring). As a
bonus, therefore, every subring of R is the image of a monomorphism.

Kernel. The kernel I = f−1(0) of a morphism of commutative rings with 1 satisfies:

(a) if s1, s2 ∈ I, then s1 + s2 ∈ I and −si ∈ I (so 0 ∈ I) and

(b) if r ∈ R and s ∈ I, then rs ∈ I (but 1 ̸∈ I unless I = R).

Conversely, we make the following definition.

Definition. A subset I ⊂ R is an ideal if it satisfies (a) and (b) above

Examples. (i) nZ ⊂ Z (for any n) is an ideal.

(ii) if S ⊂ R is a subset, then ⟨S⟩ = {
∑n

i=1 risi | ri ∈ R, si ∈ S} is the ideal
generated by S. In particular, what we’ve been calling nZ could also be called ⟨n⟩.
Notice that subrings (with 1) are NOT ideals and vice versa. This distinguishes
commutative rings from abelian groups or vector spaces, in which all kernels are
images and vice versa. Thus the cokernel of a ring homomorphism is not defined.

Definition/Proposition. Given an ideal I ⊂ R in a commutative ring, then:

r ∼ r′ if and only if r − r′ ∈ I

is an equivalence relation on R, whose equivalence classes are denoted by:

r + I := {r′ ∈ R | r ∼ r′}
and the set of equivalence classes R/I inherits a well-defined pair of operations:

(r + I) + (s+ I) := (r + s) + I and (r + I)(s+ I) = rs+ I

makingR/I into a commutative ring with 1 equipped with a canonical epimorphism:

f : R → R/I; f(r) = r + I

i.e. a surjective ring homomorphism.

Proof (of well-definedness). If r − r′ ∈ I and s− s′ ∈ I, then:

(r + s)− (r′ + s′) = (r − r′) + (s− s′) ∈ I and

(rs− r′s′) = (rs− r′s) + (r′s− r′s′) = (r − r′)s+ r′(s− s′) ∈ I

so the operations are well-defined by properties (a) and (b) of an ideal, respectively.

Note: When adapting this to a non-commutative setting, one needs to distinguish
left multiplication from right multiplication. The definition above gives a left ideal,
in which multiplication by R happens on the left, but a right ideal flips (b) to
(b’): sr ∈ I for all s ∈ I and r ∈ R. The kernel of a homomorphism is a both-
sided ideal and conversely, a quotient ring by a both-sided ideal is constructed as
above. A (non-commutative) ring with no non-trivial both-sided ideals is simple.
For example∗ the matrix ring End(kn) is simple.

Commutative Rings in the Wild. Every number field K has a ring of integers
OK ⊂ K. Class field theory is the study of these rings. Complex algebraic geometry
is concerned with the rings C[x1, ..., xn]/I and arithmetic algebraic geometry, a
blend of number theory and algebraic geometry, is about the rings OK [x1, ..., xn]/I.


