Abstract Algebra. Math 6310. Bertram/Utah 2022-23.
 Rings

Definition. A commutative ring with $1(R,+, \cdot)$ is a set R with operations:

$$
+: R \times R \rightarrow R \text { and } \cdot: R \times R \rightarrow R \text { satisfying }
$$

(i) $(R,+)$ is an abelian group (with identity 0 and additive inverse $-r$)
(ii) (R, \cdot) is associative with multiplicative identity $1 \neq 0$ and commutative, and
(iii) For each $r \in R$, the map:

$$
r:(R,+) \rightarrow(R,+) ; r(s)=r \cdot s \text { is a homomorphism }
$$

i.e. multiplication distributes with addition (and it follows* that $r \cdot 0=0$).

In other words, R satisfies the field axioms except for multiplicative inverses.
Examples. (i) The model examples are the fields k and $(\mathbb{Z},+, \cdot)$ the ring of integers.
(ii) Direct products (but not infinite direct sums!) of commutative rings with 1.
(iii) Given a commutative ring R with 1 , then the ring of polynomials:

$$
(R[x],+, \cdot)
$$

is a commutative ring with 1 , as are the rings of power series and Laurent series:

$$
R[[x]]=\left\{\sum_{d=0}^{\infty} r_{d} x^{d} \mid r_{d} \in R\right\} \text { and } R((x))=\left\{\sum_{d=e}^{\infty} r_{d} x^{d} \mid r_{d} \in R, e \in \mathbb{Z}\right\}
$$

Note. If k is a field, then $k((x))$ (but not $k[[x]])$ is also a field*.
Examples. The ring $\mathbb{C}[[z]]$ contains the subrings:

$$
\mathbb{C}[z] \subset \mathcal{H o l}(\mathbb{C}) \subset \mathcal{H o l}(U) \subset \mathcal{H} o l_{0} \subset \mathbb{C}[[z]]
$$

of entire holomorphic functions, holomorphic functions on an open set $0 \in U \subset \mathbb{C}$, and holomorphic functions in some neighborhood of 0 . The inclusions are strict*.

Before we move to ideals, we visit a few non-commutative rings.
The Group Ring. Let R be a commutative ring with 1 and $(G, *)$ be a group, Then:

$$
R[G]=\left\{\sum_{i=1}^{n} r_{i} g_{i}\right\}
$$

the set of (formal) finite sums of elements in G with coefficients in R is a ring with:

$$
\begin{aligned}
\sum r_{i} g_{i}+\sum s_{i} g_{i} & =\sum\left(r_{i}+s_{i}\right) g_{i} \text { and } \\
\left(\sum r_{i} g_{i}\right) *\left(\sum s_{j} h_{j}\right) & =\sum_{i} \sum_{j} r_{i} s_{j}\left(g_{i} * h_{j}\right)
\end{aligned}
$$

Note that $(R[G],+, *)$ is commutative if and only if G is abelian. For example,

$$
R[\mathbb{Z}]=\left\{\sum_{d=-e}^{e} r_{d} x^{d} \mid e \in \mathbb{Z}\right\}
$$

is the ring of Laurent polynomials, and for a finite cyclic group $\left(C_{n}, *\right)$,

$$
R\left[C_{n}\right]=\left\{r_{0}+r_{1} x+\cdots+r_{n-1} x^{n-1} \mid x^{n}=1\right\}
$$

where $x \in C_{n}$ is a generator (as in the case of the infinite cyclic group above).

Endomorphism Rings. Let A be an abelian group. Then the ring of endomorphisms:

$$
\operatorname{End}_{\mathrm{ab}}(A)=\{f: A \rightarrow A\}
$$

(of A as an abelian group) is a ring with composition as the product, since:

$$
(f \circ(g+h))(a)=f(g(a)+h(a))=(f \circ g)(a)+(f \circ h)(a)
$$

(but composition rarely commutes). Recall that the ring of k-linear endomorphisms:

$$
M_{n \times n}(k)=\operatorname{End}_{\mathrm{vs}}\left(k^{n}\right)
$$

is the ring of $n \times n$ matrices with matrix addition and multiplication.
Quaternions. The vector space \mathbb{R}^{4} with basis $\{1, i, j, k\}$ and multiplication:

$$
i^{2}=j^{2}=k^{2}=-1, i j=k=-j i, j k=i=-k j, k i=j=-i k
$$

is the ring \mathbb{H} of quaternions. It is not commutative, but:

$$
(a+b i+c j+d k)(a-b i-c j-d k)=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)
$$

is a nonzero real number whenever $a+b i+c j+d k \neq 0$, and so, like a field, every non-zero element of \mathbb{H} has a (unique) multiplicative inverse. A non-commutative ring with (left and right) multiplicative inverses is called a division ring.
Definition. A map $f: R \rightarrow S$ of rings with 1 is a ring homomorphism if:
(i) $f\left(r_{1}+r_{2}\right)=f\left(r_{1}\right)+f\left(r_{2}\right)$ for all $r_{1}, r_{2} \in R$ and $f(0)=0$ (linear)
i.e. f is a homomorphism of additive abelian groups, and
(ii) $f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)$ for all $r_{1}, r_{2} \in R$ and $f(1)=1$ (multiplicative)

Examples. (i) Evaluation at $x=r$ is a ring homomorphism:

$$
e v_{r}: R[x] \rightarrow R ; e v_{r}(f)=f(r)
$$

and in the special case $r=0$, we can extend this to the formal power series ring:

$$
e v_{0}: R[[x]] \rightarrow R ; e v_{0}\left(r_{0}+r_{1} x+\cdots\right)=r_{0}
$$

If we think of polynomials as functions from R to R, then this generalizes. Let S be an nonempty set, and let
$\mathcal{F} u n(S, R)=\{f: S \rightarrow R\}$ with pointwise addition and multiplication of functions.
Then $e v_{p}(f)=f(p)$ defines an evaluation homomorphism to R.
(ii) The map from integers to the commutative ring:

$$
(\mathbb{Z} / n \mathbb{Z},+, \cdot) \text { of integers } \bmod n
$$

given by $f(r)=r(\bmod n)$ is a (surjective) ring homomorphism.
Nonexamples. (i) The derivative: $d: \mathcal{C}^{1}(0,1) \rightarrow \mathcal{C}(0,1)$ is linear (and \mathbb{R}-linear) but not multiplicative (because of the Leibniz rule for products).
(ii) The determinant $\Delta: \operatorname{End}\left(k^{n}\right) \rightarrow k$ is multiplicative but not linear.

Image. The image $f(R)$ of a homomorphism of commutative rings with 1 satisfies:
(a) if $s_{1}, s_{2} \in f(R)$, then $s_{1}+s_{2} \in f(R)$ and $-s_{i} \in f(R)$ (so $\left.0 \in f(R)\right)$
(b) also, $s_{1} s_{2} \in f(R)$ and (by assumption) $1 \in f(R)$.

In other words, the image of a homomorphism is a subring (with 1).

And of course, conversely, any subring with 1 of a commutative ring R is the image of a homomorphism, namely the inclusion mapping (of the subring). As a bonus, therefore, every subring of R is the image of a monomorphism.
Kernel. The kernel $I=f^{-1}(0)$ of a morphism of commutative rings with 1 satisfies:
(a) if $s_{1}, s_{2} \in I$, then $s_{1}+s_{2} \in I$ and $-s_{i} \in I$ (so $0 \in I$) and
(b) if $r \in R$ and $s \in I$, then $r s \in I$ (but $1 \notin I$ unless $I=R$).

Conversely, we make the following definition.
Definition. A subset $I \subset R$ is an ideal if it satisfies (a) and (b) above
Examples. (i) $n \mathbb{Z} \subset \mathbb{Z}$ (for any n) is an ideal.
(ii) if $S \subset R$ is a subset, then $\langle S\rangle=\left\{\sum_{i=1}^{n} r_{i} s_{i} \mid r_{i} \in R, s_{i} \in S\right\}$ is the ideal generated by S. In particular, what we've been calling $n \mathbb{Z}$ could also be called $\langle n\rangle$.
Notice that subrings (with 1) are NOT ideals and vice versa. This distinguishes commutative rings from abelian groups or vector spaces, in which all kernels are images and vice versa. Thus the cokernel of a ring homomorphism is not defined.
Definition/Proposition. Given an ideal $I \subset R$ in a commutative ring, then:

$$
r \sim r^{\prime} \text { if and only if } r-r^{\prime} \in I
$$

is an equivalence relation on R, whose equivalence classes are denoted by:

$$
r+I:=\left\{r^{\prime} \in R \mid r \sim r^{\prime}\right\}
$$

and the set of equivalence classes R / I inherits a well-defined pair of operations:

$$
(r+I)+(s+I):=(r+s)+I \text { and }(r+I)(s+I)=r s+I
$$

making R / I into a commutative ring with 1 equipped with a canonical epimorphism:

$$
f: R \rightarrow R / I ; f(r)=r+I
$$

i.e. a surjective ring homomorphism.

Proof (of well-definedness). If $r-r^{\prime} \in I$ and $s-s^{\prime} \in I$, then:

$$
\begin{gathered}
(r+s)-\left(r^{\prime}+s^{\prime}\right)=\left(r-r^{\prime}\right)+\left(s-s^{\prime}\right) \in I \text { and } \\
\left(r s-r^{\prime} s^{\prime}\right)=\left(r s-r^{\prime} s\right)+\left(r^{\prime} s-r^{\prime} s^{\prime}\right)=\left(r-r^{\prime}\right) s+r^{\prime}\left(s-s^{\prime}\right) \in I
\end{gathered}
$$

so the operations are well-defined by properties (a) and (b) of an ideal, respectively.
Note: When adapting this to a non-commutative setting, one needs to distinguish left multiplication from right multiplication. The definition above gives a left ideal, in which multiplication by R happens on the left, but a right ideal flips (b) to (b'): sr $\in I$ for all $s \in I$ and $r \in R$. The kernel of a homomorphism is a bothsided ideal and conversely, a quotient ring by a both-sided ideal is constructed as above. A (non-commutative) ring with no non-trivial both-sided ideals is simple. For example* the matrix ring $\operatorname{End}\left(k^{n}\right)$ is simple.
Commutative Rings in the Wild. Every number field K has a ring of integers $\mathcal{O}_{K} \subset K$. Class field theory is the study of these rings. Complex algebraic geometry is concerned with the rings $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I$ and arithmetic algebraic geometry, a blend of number theory and algebraic geometry, is about the rings $\mathcal{O}_{K}\left[x_{1}, \ldots, x_{n}\right] / I$.

