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Modules

Let R be a commutative ring with 1.

Definition. An R-module is an abelian group (M,+) with a multiplication map:

· : R×M → M

that satisfies the following properties:

(i) Multiplication by a ∈ R is an abelian group homomorphism:

a(m1 +m2) = am1 + am2 and a · 0 = 0

(ii) Multiplication associates and distributes with the ring operations:

a1(a2m) = (a1a2)m and (a1 + a2)m = a1m+ a2m

(iii) Ring identities act as identities:

1 ·m = m, 0 ·m = 0

Definition. A map f : M → N of R-modules is an R-module homomorphism if:

(i) f is a homomorphism of the underlying abelian groups, and:

(ii) f(am) = af(m) for all a ∈ R and m ∈ M .

Examples. (a) Vector spaces over a field k.

(b) All abelian groups are Z-modules with repeated addition as multiplication.

(c) The product abelian group Rn = Re1 ⊕ · · · ⊕Ren with scalar multiplication.
These are the free R-modules.

(d) An ideal I ⊂ R is an R-module.

(e) If f : R → S is a ring homomorphism, then S is an R-module where the
multiplication is inherited from multiplication in the ring S.

Proposition 1. When R is viewed as an R-module, then the homomorphisms:

f : R → R

are multiplication by a = f(1). As a consequence, the R-module homomorphisms
of free R-modules are given by multiplication by matrices with entries in R.

Proof. By definition (ii), f(b) = f(b · 1) = b · f(1) = b · a for all b ∈ R. The
assembly of the matrix is exactly as in the case of vector spaces. □

Definition. An R-sub-module of an R-module M is a subgroup S ⊂ M that is also
closed under multiplication by elements of R.

Example. (a) An ideal I ⊂ R is a sub-module of R itself, thought of as an R-module.

(b) The kernel and image of an R-module homomorphism are sub-modules.

Proposition 2. Given a sub-R-module S ⊂ M , the quotient abelian group:

M/S = {m+ S | m ∈ M}/ ∼
is an R-module with product a(m + S) = am + S. This is the quotient module.
Moreover, if f : M → N is an R-module homomorphism, then the map

f : M/ ker(f) → f(M) given by f(m+K) = f(m) is an isomorphism
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Remark. The cokernel f is the quotient module q : N → N/f(M).

Example. For the Z-module homomorphsm n : Z → Z, we have the modules:
ker(n) = 0 ⊂ Z, im(n) = nZ ⊂ Z and q = coker(n) : Z → Z/nZ.

Remark. This is a first isomorphism theorem for R-modules, but since sub-modules
and kernels are the same thing (unlike subrings and ideals), we are able construct
the cokernel module. This will be systematized in the notion of an abelian category.

Definition. M is finitely generated if there is a surjective homomorphism:

f : Rn → M, of R-modules, in which case M = Rn/ ker(f) by Proposition 2.

Remark. Recall that in the case of vector spaces, being finitely generated means
having a finite spanning set of vectors. We learned in linear algebra that every
spanning set of vectors has a subset that spans and are linearly independent. We
call such a set a basis of V . The big difference between vector spaces and R-modules
is the non-existence (in general) of bases in the latter case. Note that when a basis
does exist, then by definition, the associated map:

f : Rn → M is an isomorphism

so R-modules with a basis are (isomorphic to) free R-modules, and the novel aspect
of finitely generated R-modules is that they need not be free.

Definition. An element t ∈ M of an R-module M is torsion if it is non-zero and:

at = 0 for some non-zero a ∈ R

Remark. A torsion element in an R-module is analogous to a zero-divisor in R. In
fact, it is a zero-divisor when M = R. Thus, a ring R is a domain if and only if
it has no torsion elements as a module over itself. More broadly, the free modules
Dn over a domain have no torsion elements, and neither do the submodules of free
modules over a domain. It is important, however, to keep in mind that the ring R
needs to be specified when trying to decide whether M has torsion elements or not.

Examples. (i) Every element of Z/nZ is torsion when it is viewed as a Z-module.

(ii) Every non-zero element of the field Z/pZ is not torsion, when viewed as a
module over itself, since with this interpretation, Z/pZ is a domain.

(ii) Only the elements 2 + 6Z, 3+ 6Z and 4+ 6Z (and 0) are torsion when Z/6Z
is viewed as a module over itself. Note that this set is not closed under addition.

Proposition 3. If M is an R-module and R is a domain, then the set:

T = {t ∈ M | t is a torsion element} ∪ {0} ⊂ T

is a sub-module. It is called the torsion submodule of M .

Proof. Because a domain has no zero-divisors, we can conclude that:

a1t1 = 0 and a2t2 = 0 implies a1a2(t1 + t2) = 0 and a1, a2 ̸= 0 implies a1a2 ̸= 0

Thus a sum of torsion elements is torsion, and similarly the product of a torsion
element by a (non-zero) element a ∈ R is torsion. □

We will assume R is a domain until otherwise indicated.

Definition. (a) An R-module M = T of only torsion elements is a torsion module.

(b) An R-module with no torsion elements is torsion-free.
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Proposition 4. (a) Any quotient T/S of a torsion module T is torsion.

(b) Any sub-module S ⊂ F of a torsion-free module F is torsion-free.

(c) The quotient M/T of any module by its torsion sub-module is torsion-free.

Proof. (a) and (b) are easy to see. As for (c), consider:

a(m+ T ) = 0 + T implies that am ∈ T

which implies that m ∈ T , so m+ T = 0 + T . □

Remark. Thus in particular an R-module with non-zero torsion is not free, and not
a sub-module of a free R-module (assuming always that R is a domain). We will
see that when R is a PID, torsion is the only “obstruction” to freedom.

We turn now to finitely generated modules and the special role of Noetherianness.
For this we may drop the assumption that R is a domain.

Proposition 5. If R is Noetherian and M is a finitely generated R-module, then:

(a) Every increasing chain S0 ⊂ S1 ⊂ · · · ⊂ M of sub-modules of M reaches its
maximum Sn = S∞(= ∪∞

k=0Sk).

(b) Every submodule of M is finitely generated.

Proof. Since submodules of R (viewed as an R-module) are exactly the ideals
in R, this is a generalization of the definition of a Noetherian ring. The equivalence
of (a) and (b) is exactly as in the case of ideals. Let S• be a chain of submodules
of M and consider the string of surjections of quotients:

Q0 = M/S0 → Q1 = M/S1 → · · ·

Then (a) holds if and only if every such string of surjections of quotients of M
terminates; i.e. Qn = Qn+1 = · · · = Q∞ for some n. It follows immediately that if
M has property (a) and q : M → N is a surjection, then N has property (a).

We have assumed M is finitely generated, i.e. there is a surjection q : Rn → M
from some n. So it suffices to prove (a) for the free modules Rn. Now suppose:

K ⊂ M and q : M → M/K

and property (a) holds for both K and M/K. Then:

(i) The images q(Si) form an increasing chain of submodules of M/K, so:

q(Sd) = q(Sd+1) = · · · = q(S∞) for some d, and then

(ii) (Sd ∩K) ⊂ (Sd+1 ∩K) ⊂ ... are an increasing chain of submodules of K, so

Se ∩K = Se+1 ∩K = · · · = S∞ ∩K for some e ≥ d

Suppose s ∈ S∞. Then some se ∈ Se satisfies q(s) = q(se) (since e ≥ d), and
then some ke ∈ Se ∩K satisfies ke = s− se ∈ S∞ ∩K. So:

s = ke + se ∈ Se

and we have shown that Se = S∞. We apply this to the inclusion of the first factor:

R ⊂ Rn and the projection q : Rn → Rn/R = Rn−1

onto the remaining factors to conclude that if Rn−1 satisfies (a), then Rn does too.
But then we’re done by induction! □
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Corollary. If R is Noetherian, then every finitely generated module M is finitely
presented, i.e. there is a sequence of R-modules:

Rm f→ Rn q→ M → 0

such that q is surjective, and the image of f is the kernel of q and therefore:

Every finitely presented R-module is (by definition) the cokernel of a matrix:

A = (aij) : R
m → Rn; aij ∈ R

Notice that in the case of a Noetherian ring, we can repeat the generations:

Rn → M is surjective, with kernel M ′

Rn1 → M ′ is surjective, with kernel M ′′

Rn2 → M ′′ is surjective, with kernel M ′′′

etc

and we can ask whether these modules “improve” in some measurable way with
each successive iteration. We’ve already seen one instance of this, namely, the fact
that M ′,M ′′,... are submodules of a free module, and therefore have no torsion.

Example. Let k[x0] be the polynomial ring, and consider:

ev0 : k[x0] → k the evaluation at x0 = 0

Then the kernel is the ideal module x0k[x0] ⊂ k[x0], which is free (of rank one).

Next, consider the polynomial ring k[x0, x1] in two variables, and:

ev(0,0) : k[x0, x1] → k the evaluation at (x0, x1) = (0, 0)

Then the kernel ideal is generated by x0 and x1, which is the image:

k[x0, x1]
2 → k[x0, x1]; A = (x0, x1)

T

and the kernel of this matrix is free, generated by:

k[x0, x1] → k[x0, x1]
2; B = (−x1, x0)

In other words, every pair f, g ∈ k[x0, x1] such that x0f + x1g = 0 satisfies:

f = −x1h and g = x0h

for a polynomial h (this follows from the fact that k[x0, x1] is a UFD!

These are the first two cases of the Koszul complex for the k[x0, ..., xn]-module k.


