Abstract Algebra. Math 6310. Bertram/Utah 2022-23.

Modules

Let R be a commutative ring with 1 .
Definition. An R-module is an abelian group $(M,+)$ with a multiplication map:

$$
\cdot: R \times M \rightarrow M
$$

that satisfies the following properties:
(i) Multiplication by $a \in R$ is an abelian group homomorphism:

$$
a\left(m_{1}+m_{2}\right)=a m_{1}+a m_{2} \text { and } a \cdot 0=0
$$

(ii) Multiplication associates and distributes with the ring operations:

$$
a_{1}\left(a_{2} m\right)=\left(a_{1} a_{2}\right) m \text { and }\left(a_{1}+a_{2}\right) m=a_{1} m+a_{2} m
$$

(iii) Ring identities act as identities:

$$
1 \cdot m=m, 0 \cdot m=0
$$

Definition. A map $f: M \rightarrow N$ of R-modules is an R-module homomorphism if:
(i) f is a homomorphism of the underlying abelian groups, and:
(ii) $f(a m)=a f(m)$ for all $a \in R$ and $m \in M$.

Examples. (a) Vector spaces over a field k.
(b) All abelian groups are \mathbb{Z}-modules with repeated addition as multiplication.
(c) The product abelian group $R^{n}=R e_{1} \oplus \cdots \oplus R e_{n}$ with scalar multiplication. These are the free R-modules.
(d) An ideal $I \subset R$ is an R-module.
(e) If $f: R \rightarrow S$ is a ring homomorphism, then S is an R-module where the multiplication is inherited from multiplication in the ring S.

Proposition 1. When R is viewed as an R-module, then the homomorphisms:

$$
f: R \rightarrow R
$$

are multiplication by $a=f(1)$. As a consequence, the R-module homomorphisms of free R-modules are given by multiplication by matrices with entries in R.

Proof. By definition (ii), $f(b)=f(b \cdot 1)=b \cdot f(1)=b \cdot a$ for all $b \in R$. The assembly of the matrix is exactly as in the case of vector spaces.
Definition. An R-sub-module of an R-module M is a subgroup $S \subset M$ that is also closed under multiplication by elements of R.

Example. (a) An ideal $I \subset R$ is a sub-module of R itself, thought of as an R-module.
(b) The kernel and image of an R-module homomorphism are sub-modules.

Proposition 2. Given a sub- R-module $S \subset M$, the quotient abelian group:

$$
M / S=\{m+S \mid m \in M\} / \sim
$$

is an R-module with product $a(m+S)=a m+S$. This is the quotient module. Moreover, if $f: M \rightarrow N$ is an R-module homomorphism, then the map

$$
\bar{f}: M / \operatorname{ker}(f) \rightarrow f(M) \text { given by } \bar{f}(m+K)=f(m) \text { is an isomorphism }
$$

Remark. The cokernel f is the quotient module $q: N \rightarrow N / f(M)$.
Example. For the \mathbb{Z}-module homomorphsm $n: \mathbb{Z} \rightarrow \mathbb{Z}$, we have the modules: $\operatorname{ker}(n)=0 \subset \mathbb{Z}, \operatorname{im}(n)=n \mathbb{Z} \subset \mathbb{Z}$ and $q=\operatorname{coker}(n): \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$.
Remark. This is a first isomorphism theorem for R-modules, but since sub-modules and kernels are the same thing (unlike subrings and ideals), we are able construct the cokernel module. This will be systematized in the notion of an abelian category.
Definition. M is finitely generated if there is a surjective homomorphism:
$f: R^{n} \rightarrow M$, of R-modules, in which case $M=R^{n} / \operatorname{ker}(f)$ by Proposition 2.
Remark. Recall that in the case of vector spaces, being finitely generated means having a finite spanning set of vectors. We learned in linear algebra that every spanning set of vectors has a subset that spans and are linearly independent. We call such a set a basis of V. The big difference between vector spaces and R-modules is the non-existence (in general) of bases in the latter case. Note that when a basis does exist, then by definition, the associated map:

$$
f: R^{n} \rightarrow M \text { is an isomorphism }
$$

so R-modules with a basis are (isomorphic to) free R-modules, and the novel aspect of finitely generated R-modules is that they need not be free.
Definition. An element $t \in M$ of an R-module M is torsion if it is non-zero and:

$$
a t=0 \text { for some non-zero } a \in R
$$

Remark. A torsion element in an R-module is analogous to a zero-divisor in R. In fact, it is a zero-divisor when $M=R$. Thus, a ring R is a domain if and only if it has no torsion elements as a module over itself. More broadly, the free modules D^{n} over a domain have no torsion elements, and neither do the submodules of free modules over a domain. It is important, however, to keep in mind that the ring R needs to be specified when trying to decide whether M has torsion elements or not.

Examples. (i) Every element of $\mathbb{Z} / n \mathbb{Z}$ is torsion when it is viewed as a \mathbb{Z}-module.
(ii) Every non-zero element of the field $\mathbb{Z} / p \mathbb{Z}$ is not torsion, when viewed as a module over itself, since with this interpretation, $\mathbb{Z} / p \mathbb{Z}$ is a domain.
(ii) Only the elements $2+6 \mathbb{Z}, 3+6 \mathbb{Z}$ and $4+6 \mathbb{Z}$ (and 0) are torsion when $\mathbb{Z} / 6 \mathbb{Z}$ is viewed as a module over itself. Note that this set is not closed under addition.

Proposition 3. If M is an R-module and R is a domain, then the set:

$$
T=\{t \in M \mid t \text { is a torsion element }\} \cup\{0\} \subset T
$$

is a sub-module. It is called the torsion submodule of M.
Proof. Because a domain has no zero-divisors, we can conclude that:

$$
a_{1} t_{1}=0 \text { and } a_{2} t_{2}=0 \text { implies } a_{1} a_{2}\left(t_{1}+t_{2}\right)=0 \text { and } a_{1}, a_{2} \neq 0 \text { implies } a_{1} a_{2} \neq 0
$$

Thus a sum of torsion elements is torsion, and similarly the product of a torsion element by a (non-zero) element $a \in R$ is torsion.

We will assume R is a domain until otherwise indicated.
Definition. (a) An R-module $M=T$ of only torsion elements is a torsion module.
(b) An R-module with no torsion elements is torsion-free.

Proposition 4. (a) Any quotient T / S of a torsion module T is torsion.
(b) Any sub-module $S \subset F$ of a torsion-free module F is torsion-free.
(c) The quotient M / T of any module by its torsion sub-module is torsion-free.

Proof. (a) and (b) are easy to see. As for (c), consider:

$$
a(m+T)=0+T \text { implies that } a m \in T
$$

which implies that $m \in T$, so $m+T=0+T$.
Remark. Thus in particular an R-module with non-zero torsion is not free, and not a sub-module of a free R-module (assuming always that R is a domain). We will see that when R is a PID, torsion is the only "obstruction" to freedom.

We turn now to finitely generated modules and the special role of Noetherianness. For this we may drop the assumption that R is a domain.
Proposition 5. If R is Noetherian and M is a finitely generated R-module, then:
(a) Every increasing chain $S_{0} \subset S_{1} \subset \cdots \subset M$ of sub-modules of M reaches its maximum $S_{n}=S_{\infty}\left(=\cup_{k=0}^{\infty} S_{k}\right)$.
(b) Every submodule of M is finitely generated.

Proof. Since submodules of R (viewed as an R-module) are exactly the ideals in R, this is a generalization of the definition of a Noetherian ring. The equivalence of (a) and (b) is exactly as in the case of ideals. Let $S \bullet$ be a chain of submodules of M and consider the string of surjections of quotients:

$$
Q_{0}=M / S_{0} \rightarrow Q_{1}=M / S_{1} \rightarrow \cdots
$$

Then (a) holds if and only if every such string of surjections of quotients of M terminates; i.e. $Q_{n}=Q_{n+1}=\cdots=Q_{\infty}$ for some n. It follows immediately that if M has property (a) and $q: M \rightarrow N$ is a surjection, then N has property (a).

We have assumed M is finitely generated, i.e. there is a surjection $q: R^{n} \rightarrow M$ from some n. So it suffices to prove (a) for the free modules R^{n}. Now suppose:

$$
K \subset M \text { and } q: M \rightarrow M / K
$$

and property (a) holds for both K and M / K. Then:
(i) The images $q\left(S_{i}\right)$ form an increasing chain of submodules of M / K, so:

$$
q\left(S_{d}\right)=q\left(S_{d+1}\right)=\cdots=q\left(S_{\infty}\right) \text { for some } d, \text { and then }
$$

(ii) $\left(S_{d} \cap K\right) \subset\left(S_{d+1} \cap K\right) \subset \ldots$ are an increasing chain of submodules of K, so

$$
S_{e} \cap K=S_{e+1} \cap K=\cdots=S_{\infty} \cap K \text { for some } e \geq d
$$

Suppose $s \in S_{\infty}$. Then some $s_{e} \in S_{e}$ satisfies $q(s)=q\left(s_{e}\right)$ (since $e \geq d$), and then some $k_{e} \in S_{e} \cap K$ satisfies $k_{e}=s-s_{e} \in S_{\infty} \cap K$. So:

$$
s=k_{e}+s_{e} \in S_{e}
$$

and we have shown that $S_{e}=S_{\infty}$. We apply this to the inclusion of the first factor:

$$
R \subset R^{n} \text { and the projection } q: R^{n} \rightarrow R^{n} / R=R^{n-1}
$$

onto the remaining factors to conclude that if R^{n-1} satisfies (a), then R^{n} does too. But then we're done by induction!

Corollary. If R is Noetherian, then every finitely generated module M is finitely presented, i.e. there is a sequence of R-modules:

$$
R^{m} \xrightarrow{f} R^{n} \xrightarrow{q} M \rightarrow 0
$$

such that q is surjective, and the image of f is the kernel of q and therefore:
Every finitely presented R-module is (by definition) the cokernel of a matrix:

$$
A=\left(a_{i j}\right): R^{m} \rightarrow R^{n} ; a_{i j} \in R
$$

Notice that in the case of a Noetherian ring, we can repeat the generations:

$$
\begin{aligned}
R^{n} & \rightarrow M \text { is surjective, with kernel } M^{\prime} \\
R^{n_{1}} & \rightarrow M^{\prime} \text { is surjective, with kernel } M^{\prime \prime} \\
R^{n_{2}} & \rightarrow M^{\prime \prime} \text { is surjective, with kernel } M^{\prime \prime \prime}
\end{aligned}
$$

etc
and we can ask whether these modules "improve" in some measurable way with each successive iteration. We've already seen one instance of this, namely, the fact that $M^{\prime}, M^{\prime \prime}, \ldots$ are submodules of a free module, and therefore have no torsion.
Example. Let $k\left[x_{0}\right]$ be the polynomial ring, and consider:

$$
\mathrm{ev}_{0}: k\left[x_{0}\right] \rightarrow k \text { the evaluation at } x_{0}=0
$$

Then the kernel is the ideal module $x_{0} k\left[x_{0}\right] \subset k\left[x_{0}\right]$, which is free (of rank one).
Next, consider the polynomial ring $k\left[x_{0}, x_{1}\right]$ in two variables, and:

$$
\mathrm{ev}_{(0,0)}: k\left[x_{0}, x_{1}\right] \rightarrow k \text { the evaluation at }\left(x_{0}, x_{1}\right)=(0,0)
$$

Then the kernel ideal is generated by x_{0} and x_{1}, which is the image:

$$
k\left[x_{0}, x_{1}\right]^{2} \rightarrow k\left[x_{0}, x_{1}\right] ; A=\left(x_{0}, x_{1}\right)^{T}
$$

and the kernel of this matrix is free, generated by:

$$
k\left[x_{0}, x_{1}\right] \rightarrow k\left[x_{0}, x_{1}\right]^{2} ; B=\left(-x_{1}, x_{0}\right)
$$

In other words, every pair $f, g \in k\left[x_{0}, x_{1}\right]$ such that $x_{0} f+x_{1} g=0$ satisfies:

$$
f=-x_{1} h \text { and } g=x_{0} h
$$

for a polynomial h (this follows from the fact that $k\left[x_{0}, x_{1}\right]$ is a UFD!
These are the first two cases of the Koszul complex for the $k\left[x_{0}, \ldots, x_{n}\right]$-module k.

