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Derived Functors

Let A be an abelian category.

Definition. (a) A has enough projectives if each object A admits:

P → A→ 0

an epimorphism from a projective object P of A.
(b) A has enough injectives if each object A admits:

0→ A→ I

a monomorphism to an injective object I of A.
Fortunately for us, the categories ModR of R-modules have enough of both.

Note that by iterating, we obtain exact complexes of projectives and of injectives:

· · · → P2
d2→ P1

d1→ P0
d0→ A→ 0

and

0→ A
d0→ I0

d1→ I1
d2→ I2 → · · ·

We will use the first to construct left derived functors (of a right-exact functor) and
the second to construct right derived functors (of a left-exact functor).

Remark. One might instead use superscripts for the terms of the injective resolution
(which is a “cochain” since the indices increase as one moves to the right).

Recall that given an R-module M , the Hom (covariant) functor:

FM := HomR(M, ·) :ModR →ModR

is left-exact. The opposite Hom functor FM = HomR(·,M) is also left-exact, but
behaves more like a right-exact functor since it is contravariant. The tensor product
defines a right-exact covariant functor as follows:

Proposition 1. Tensoring with a fixed R-module M defines the functor:

TM (N) = N ⊗R M, with

TM (f : N → N ′) = (f ⊗ 1M : N ⊗R M → N ′ ⊗R M)

that is (covariant and) right-exact.

Proof. It is clear that this is a functor. Right-exactness is the issue. Let

(∗) N f→ N ′ g→ N ′′ → 0

be a right-exact sequence of R-modules. Then:

(i) g ⊗ 1M is surjective (this is obvious).

(ii) (g ⊗ 1M ) ◦ (f ⊗ 1M ) = (g ◦ f)⊗ 1M = 0 (this is also obvious)

(iii) The morphism g ⊗ 1M is the cokernel of f ⊗ 1M . Recall the universal
properties UC and UT of the cokernel (in an arbitrary abelian category) and tensor
product (in the category of R-modules) respectively, and consider:

N ×M
(f,1M )→ N ′ ×M

(g,1M )→ N ′′ ×M → 0

the sequence of R-bilinear maps, with the analogue of the cokernel property:
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UC: Any bilinear map b′ : N ′ × M → L such that b′ ◦ (f, 1M ) = 0 is the
composition b′′ ◦ (g, 1M ) for the unique bilinear map b′′ : N ′′ ×M → L defined
by b′′(g(n′),m) = b′(n′,m). Coupling this with the universal property UT of the
tensor product, we obtain the following:

An R-module homomorphism h′ : N ′ ⊗R M → L with h′ ◦ (f ⊗ 1M ) = 0 gives:

b′ : N ′ ×M → N ′ ⊗R M → L with b′ ◦ (f, 1M ) = 0

which therefore factors through a unique bilinear map b′′ : N ′′ ×M → L and, by
UT, factors uniquely through an R-module homomorphism h′′ : N ′′ ⊗R M → L.

Thus g ⊗ 1M is the cokernel of f ⊗ 1M in the abelian categoryModR, which is
to say that the sequence (∗)⊗R M is exact at the middle term. □

Getting back to the projectives:

Proposition 2. In an arbitrary abelian category A, suppose:

· · · → P2
d2→ P1

d1→ P0
d0→ A → 0
↓ f

· · · → E2
∂2→ E1

∂1→ E0
∂0→ A′ → 0

are two exact sequences, the first made up of projectives. Then:

(a) There is an extension of f to a morphism of chain complexes:

f• : P• → E•

(b) Any two such extensions f• and g• are homotopic maps of chain complexes.

Proof. (a) The map f ◦ d0 : P0 → A′ lifts to f0 : P0 → E0 using the facts
that ∂0 is surjective and P0 is projective. Then f0 maps ker(d0) = im(d1) to
ker(∂0) = im(∂1) since f ◦ d0 = ∂0 ◦ f0 and so we may once more lift f0 ◦ d1 to
f1 : P1 → E1 satisfying f0 ◦ d1 = ∂1 ◦ f1 and continue.

(b) Given two such extensions f• and g• each making the diagram commute:

· · · → P2
d2→ P1

d1→ P0
d0→ A → 0

f2 ↓↓ g2 f1 ↓↓ g1 f0 ↓↓ g0 f ↓↓ f
· · · → E2

∂2→ E1
∂1→ E0

∂0→ A′ → 0

we also define the homotopy between them inductively. First, we let:

0 = h−1 : A→ E0 so that f − f = ∂0 ◦ h−1

Then we notice that f0 − g0 maps P0 to the kernel of ∂0, so we may choose:

h0 : P0 → E1 so that f0 − g0 = ∂1 ◦ h0 = ∂1 ◦ h0 + h−1 ◦ d0
Then ∂1(f1 − g1 − h0 ◦ d1) = (f0 − g0) ◦ d1 − (∂1 ◦ h0) ◦ d1 = 0, so we choose:

h1 : P1 → E2 so that f1 − g1 − h0 ◦ d1 = ∂2 ◦ h1

and one more step gets us to the general case. We have ∂2(f2 − g2 − h1 ◦ d2) =
(f1 − g1) ◦ d2 − (∂2 ◦ h1) ◦ d2 = (f1 − g1) ◦ d2 − (f1 − g1 − h0 ◦ d1) ◦ d2 = 0 and this
allows us to choose:

h2 : P2 → E3 so that f2 − g2 − h1 ◦ d2 = ∂3 ◦ h2

and off we go. In the end, we have the desired homotoy hi : Pi → Ei+1 satisfying:

fi − gi = ∂i+1 ◦ hi + hi−1 ◦ di □
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Corollary. Let F : A → B be a right-exact functor of abelian categories and
assume A has enough projectives. Then the sequence of left derived functors:

LiF (A) := Hi(F (P•)); LiF (f : A→ B)) = Hi(F (f) : F (P•)→ F (Q•))

are well-defined (only up to isomorphism, unfortunately) by choosing projective
resolutions P• (for A) and Q• (for B) and using Proposition 2.

Proof. We show any two projective resolutions of A give isomorphic homologies:

Hi(F (P•)) and Hi(F (P ′
•))

To this end, we apply the Proposition twice to get:

· · · → P2
d2→ P1

d1→ P0
d0→ A → 0

↓ i2 ↓ i1 ↓ i0 ↓ 1A
· · · → P ′

2

d′
2→ P ′

1

d′
1→ P ′

0

d′
0→ A → 0

↓ j2 ↓ j1 ↓ j0 ↓ 1A
· · · → P2

d2→ P1
d1→ P0

d0→ A → 0

and homotopies hi : Pi → Pi+1 exhibiting j• ◦ i• ∼ 1P• (from the Proposition since
both sides are lifts of 1A), and h′

i : P
′
i → P ′

i+1 exhibiting i• ◦ j• ∼ 1P ′
•
.

Now we apply F to everything, and get morphisms (F ◦ i)• and (F ◦ j•) and
homotopies (F ◦h)• and (F ◦h′)• exhibiting (F ◦ j•)◦ (F ◦ i•) ∼ 1F◦P and (F ◦ i)• ◦
(F ◦ j)• ∼ 1F◦P ′ . Since homotopic maps of complexes induce the same maps on
homology, it follows that eachHi(F ◦i) : Hi(F (P ))→ Hi(F (P ′)) is an isomorphism,
with inverse Hi(F ◦ j).

The Corollary then follows (except for the troubling isomorphism business) by
applying Proposition 2 to P• and Q• and f : A→ B. □

Theorem 3. Given a right-exact functor F : A → B and a short-exact sequence:

(∗) 0→ A→ A′ → A′′ → 0

in an abelian category A with enough projectives, there is a long exact sequence:

→ L1F (A′)→ L1F (A′′)→ F (A)→ F (A′)→ F (A′′)→ 0

of objects of B.

Proof. Choose projective resolutions: P• → A and P ′′
• → A′′. We will fashion

a third projective resolution of A′ that fits in a short exact sequence:

0→ P• → P ′
• → P ′′

• → 0

of chain complexes, which remains short-exact after applying the functor F to each
of the complexes. The Zigzag Lemma then gives the desired long exact sequence
among the homology objects of F (P•), F (P ′

•) and F (P ′′
• ), which is the result.

In fact, the terms of P ′
• are direct sums P ′

i = Pi ⊕ P ′′
i and the horizontal maps

are the standard inclusions and projections:

0→ Pi
ι→ Pi ⊕ P ′′

i
q→ P ′′

i → 0

which explains why these horizontal sequences remain exact after applying F .
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In the diagram below, the map d′′0 : P ′′
0 → B′′ lifts (because P ′′

0 is a projective)
to a map P ′′

0 → B′, and then we obtain a commutative diagram:

P0 → P0 ⊕ P ′
0 → P ′′

0

↓ d0 ↘ ↓ d′0 ↙ ↓ d′′0
0 → B

f→ B′ g→ B′′ → 0

with d′0 defined (and surjective by the five lemma...or rather the first four lemma!)
using the universal property of the coproduct. Then we consider:

0→ ker(d0)→ ker(d′0)→ ker(d′′0)→ 0

which is exact (by the snake lemma) giving a diagram just as the one above:

P1 → P1 ⊕ P ′
1 → P ′′

1

↓ d1 ↘ ↓ d′1 ↙ ↓ d′′1
0 → ker(d0) → ker(d′0) → ker(d′′0) → 0

with surjective vertical maps, etc. □

Example. The left derived functors of the tensor functor TM (N) = N ⊗R M are:

TorRi (N,M) := LiTM (N)

Thus, for example, to compute Tori(M,k), we will use the (free) Koszul resolution:

0→ k[x, y]
(−y,x)→ k[x, y]⊕ k[x, y]

x+y→ k[x, y]→ k → 0

for k, and then we obtain Tori(M,k) as the homologies of the sequence:

M
(−y,x)→ M ⊕M

x+y→ M

(since M ⊗R R = M). Thus, for instance when M = k, all maps are zero(!) and:

Tor2(k, k) = k, Tor1(k, k) = k2 and Tor0(k, k) = k ⊗R k = k

When M = k[y] = k[x, y]/⟨x⟩, only the x map is zero, and we get:

Tor2(k[y], k) = 0, Tor1(k[y], k) = k and Tor0(k[y], k) = k ⊗R k[y] = k

Or we could resolve k[y] instead: 0→ k[x, y]
x→ k[x, y]→ k[y]→ 0 and then:

M
x→M

computes Tori(M,k[y]), so e.g. Tori(k, k[y]) = Tori(k[y], k]. This is no accident.

Finally, given the short-exact sequence:

0→ k[y]
y→ k[y]→ k → 0

we can get a long exact sequence of Tor’s by applying the functor ⊗k. This gives:

0→ Tor2(k, k)→ Tor1(k[y], k)
0→ Tor1(k[y], k)→ Tor1(k, k)→ k

0→ k → k → 0

Remark. If R is a PID, then every finitely generated module N resolves as:

0→ Rm → Rn → N → 0

for some free modules Rm and Rn. It follows that Tori(M ⊗ N) = 0 when i > 1.
This is, in particular, the case for finitely generated abelian groups.

Meanwhile, over in Opposite Land...
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By reversing all arrows and replacing projectives with injectives, we get:

3 Theorem: Given a left-exact functor G : A → B from an abelian category A
with enough injectives, we obtain right derived functors:

RiG(A) = Hi(G ◦ I• and RiG(f : A→ A′)

where I• is an injective resolution of A, via 2 Proposition applied with arrows
reversed and injectives in place of projectives. Then every short-exact sequence:

0→ A→ A′ → A′′ → 0

induces a long exact sequence of objects of B:
0→ G(A)→ G(A′)→ G(A′′)→ R1G(A)→ R1G(A′)→ R1G(A′′)→ · · ·

Example. The right-derived functors of the left-exact FM = HomR(M, ·) are:

ExtiR(M,N) := RiFM (N), the Ext modules

Thus, for example, letting M = N ′′, we have a long exact sequence:

0→ Hom(N ′′, N)
f∗→ Hom(N ′′, N ′)

g∗→ Hom(N ′′, N ′′)
δ1→ Ext1(N ′′, N)→ · · ·

associated to any short exact sequence of the form

(∗) 0→ N → N ′ → N ′′ → 0

and the extension class ϵ(∗) := δ(1N ′′) ∈ Ext1(N ′′, N) of the sequence is zero if and
only if 1N ′′ is in the image of g∗, if and only if the sequence (∗) splits.

Interestingly, there is a converse to this. Given ϵ ∈ Ext1(N ′′, N), we can fashion
a short exact sequence (∗) (in particular, constructing the module N ′ in the middle)
with ϵ(∗) = ϵ. Starting with an injective resolution:

0→ N
d0→ I0

d1→ I1
d2→ I2 → · · · and

we have, by definition, that ϵ is an element of the middle homology of:

Hom(N ′′, I0)
d1∗→ Hom(N ′′, I1)

d2∗→ Hom(N ′′, I2)

i.e. ϵ ∈ Hom(N ′′, ker(d2)) = Hom(N ′′, im(d1)) (modulo the image of d1∗).

Now we add an injective resolution of N ′′ to the mix:

0→ N ′′ d0
′′

→ I0
′′ d1

′′

→ I1
′′ d2

′′

→ I2
′′ → · · ·

Then, using the injectivity of I1, we obtain f : I0
′′ → I1:

I1
↑ ϵ ↖ f

N ′′ d0
′′

→ I0
′′

which we use to define a homomorphism:

Φ =

[
d1 f
0 d1

′′

]
: I0 ⊕ I0

′′ → I1 ⊕ I1
′′

and then we obtain a commuting diagram:

0 → I1 → I1 ⊕ I ′′1 → I ′′1 → 0
↑ d1 ↑ Φ ↑ d′′1

0 → I0 → I0 ⊕ I ′′0 → I ′′0 → 0
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with sequence (from the snake lemma):

0→ N → ker(Φ)→ N ′′ δ→ coker(d1)→ coker(Φ)→ coker(d′′1)→ 0

But if i1, j1 ∈ I1 and (i1, 0)− (j1, 0) = 0 as an element of coker(Φ), then

(i1, 0)− (j1, 0) = (i1 − j1, 0) = Φ(i0, i
′′
0) = (d1(i0) + f(i′′0), d

′′
1(i

′′
0)) for some (i0, i

′′
0)

and then it follows that d′′1(i
′′
0) = 0, so i′′0 = d′′0(n

′′) for some n′′ ∈ N ′′ and also that
f(i′′0) = ϵ(n′′) ∈ ker(d2) = im(d1), so i1 − j1 = d1(i0) + f(i′′0) is in the image of d1
and i1− j1 = 0 as an element of coker(d1). All this is to say that the map following
δ is injective, and so by exactness δ is the zero map! The truncated sequence:

(∗) 0→ N → N ′ = ker(Φ)→ N ′′ δ→ 0

is the desired short exact sequence with ϵ(∗) = ϵ. □

Problem. It is difficult to work with injective resolutions.

For the Ext functors there is a convenient fix, which we give without proof.

Theorem 4. Instead of computing Exti(M,N) as

Hi(Hom(M, I•))

for an injective resolution I• of N , we may instead compute it as:

Hi(Hom(P•, N))

for a projective resolution of M (and the contravariant functor FN = Hom(•, N)).

Remark. The same drill as for the 3 Theorems allow one to conclude that FN has
right derived functors, computed as Hi(Hom(P•, N)). The surprising part of the
Theorem is that this yields the same modules Exti(M,N).

Examples. The following sequence of abelian groups is clearly not split:

(∗) 0→ Z (2,1)→ Z⊕ Z/3Z 1+4→ Z/6Z→ 0

and so determines a nonzero class ϵ(∗) ∈ Ext1(Z/6Z,Z). We may compute this via:

0→ Z 6→ Z→ Z/6Z→ 0

which we hit with the functor FZ to get:

Z = Hom(Z,Z) 6∗← Hom(Z,Z) = Z

from which we conclude that Ext1(Z,Z/6Z) = Z/6Z.

We know that the zero extension class gives the split sequence, but:

Question. Which extension class(es) give:

(∗) 0→ Z (2,1)→ Z⊕ Z/3Z 1+4→ Z/6Z→ 0?

and which extension class(es) give: (∗∗) 0→ Z 6→ Z→ Z/6Z→ 0?

and are we missing any other short exact sequences?

Popup Ad. Let X be a topological space, and consider the category X with:

The objects of X are the open subsets U of X.

The morphisms of X are the inclusions U ⊆ V .
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A contravariant functor A : X → Ab (to the category of abelian groups) is a
presheaf of abelian groups on X. In other words, a presheaf F consists of:

(i) An abelian group A(U) attached to each open subset, and

(ii) Restriction maps ρV,U : A(V )→ A(U) attached to each U ⊆ V such that:

• ρU,U = 1A(U) and:

• ρV,U ◦ ρW,V = ρW,U : A(W )→ A(U) whenever U ⊆ V ⊆W .

Example. The constant presheaf A (for a fixed abelian group A) is defined by:

A(∅) = 0, A(U) = A and ρV,U = 1A for all U ̸= ∅
Rather amazingly, this is an interesting presheaf. It is associated to:

The locally constant sheaf A+, defined by:

A+(U) = {continuous maps f : U → A for the discrete topology on A}.
A+(U ⊆ V ) is the restriction of continuous functions f : V → A to f |U : U → A.

Note that if U is connected, then A(U) = A+(U), since the continuous maps
from a connected set to a set with the discrete topology are the constant maps!
But if U has n connected components, then A+(U) = An and the restriction maps
to each connected component are the projections.

There is a lot to say about this, but suffice it for the purposes of this teaser to
say that there is a category of sheaves of abelian groups on the fixed topological
space X with enough injectives, and that the covariant global section functor

Γ : A → Ab; A 7→ A(X)

is left-exact, which then defines right derived functors of the global section functor,
which are the cohomology groups:

Hi(X,A) := RiΓ(X,A)

These may be computed by taking a “good open cover” of X, and are basically
dual to the singular cohomology of X (when A = Z) that we discussed in an earlier
popup topological ad.


