Abstract Algebra. Math 6310. Bertram/Utah 2022-23. Derived Functors

Let \mathcal{A} be an abelian category.
Definition. (a) \mathcal{A} has enough projectives if each object A admits:

$$
P \rightarrow A \rightarrow 0
$$

an epimorphism from a projective object P of \mathcal{A}.
(b) \mathcal{A} has enough injectives if each object A admits:

$$
0 \rightarrow A \rightarrow I
$$

a monomorphism to an injective object I of \mathcal{A}.
Fortunately for us, the categories $\mathcal{M o d}_{R}$ of R-modules have enough of both. Note that by iterating, we obtain exact complexes of projectives and of injectives:

$$
\cdots \rightarrow P_{2} \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} A \rightarrow 0
$$

and

$$
0 \rightarrow A \xrightarrow{d_{0}} I_{0} \xrightarrow{d_{1}} I_{1} \xrightarrow{d_{2}} I_{2} \rightarrow \cdots
$$

We will use the first to construct left derived functors (of a right-exact functor) and the second to construct right derived functors (of a left-exact functor).

Remark. One might instead use superscripts for the terms of the injective resolution (which is a "cochain" since the indices increase as one moves to the right).

Recall that given an R-module M, the Hom (covariant) functor:

$$
F_{M}:=\operatorname{Hom}_{R}(M, \cdot): \operatorname{Mod}_{R} \rightarrow \mathcal{M o d}_{R}
$$

is left-exact. The opposite Hom functor $F^{M}=\operatorname{Hom}_{R}(\cdot, M)$ is also left-exact, but behaves more like a right-exact functor since it is contravariant. The tensor product defines a right-exact covariant functor as follows:

Proposition 1. Tensoring with a fixed R-module M defines the functor:

$$
\begin{gathered}
T_{M}(N)=N \otimes_{R} M, \text { with } \\
T_{M}\left(f: N \rightarrow N^{\prime}\right)=\left(f \otimes 1_{M}: N \otimes_{R} M \rightarrow N^{\prime} \otimes_{R} M\right)
\end{gathered}
$$

that is (covariant and) right-exact.
Proof. It is clear that this is a functor. Right-exactness is the issue. Let

$$
(*) N \xrightarrow{f} N^{\prime} \xrightarrow{g} N^{\prime \prime} \rightarrow 0
$$

be a right-exact sequence of R-modules. Then:
(i) $g \otimes 1_{M}$ is surjective (this is obvious).
(ii) $\left(g \otimes 1_{M}\right) \circ\left(f \otimes 1_{M}\right)=(g \circ f) \otimes 1_{M}=0$ (this is also obvious)
(iii) The morphism $g \otimes 1_{M}$ is the cokernel of $f \otimes 1_{M}$. Recall the universal properties UC and UT of the cokernel (in an arbitrary abelian category) and tensor product (in the category of R-modules) respectively, and consider:

$$
N \times M \xrightarrow{\left(f, 1_{M}\right)} N^{\prime} \times M \xrightarrow{\left(g, 1_{M}\right)} N^{\prime \prime} \times M \rightarrow 0
$$

the sequence of R-bilinear maps, with the analogue of the cokernel property:

UC: Any bilinear map $b^{\prime}: N^{\prime} \times M \rightarrow L$ such that $b^{\prime} \circ\left(f, 1_{M}\right)=0$ is the composition $b^{\prime \prime} \circ\left(g, 1_{M}\right)$ for the unique bilinear map $b^{\prime \prime}: N^{\prime \prime} \times M \rightarrow L$ defined by $b^{\prime \prime}\left(g\left(n^{\prime}\right), m\right)=b^{\prime}\left(n^{\prime}, m\right)$. Coupling this with the universal property UT of the tensor product, we obtain the following:

An R-module homomorphism $h^{\prime}: N^{\prime} \otimes_{R} M \rightarrow L$ with $h^{\prime} \circ\left(f \otimes 1_{M}\right)=0$ gives:

$$
b^{\prime}: N^{\prime} \times M \rightarrow N^{\prime} \otimes_{R} M \rightarrow L \text { with } b^{\prime} \circ\left(f, 1_{M}\right)=0
$$

which therefore factors through a unique bilinear map $b^{\prime \prime}: N^{\prime \prime} \times M \rightarrow L$ and, by UT, factors uniquely through an R-module homomorphism $h^{\prime \prime}: N^{\prime \prime} \otimes_{R} M \rightarrow L$.

Thus $g \otimes 1_{M}$ is the cokernel of $f \otimes 1_{M}$ in the abelian category Mod_{R}, which is to say that the sequence $(*) \otimes_{R} M$ is exact at the middle term.

Getting back to the projectives:
Proposition 2. In an arbitrary abelian category \mathcal{A}, suppose:

$$
\begin{array}{lllllllllll}
\cdots & \rightarrow & P_{2} & \xrightarrow{d_{2}} & P_{1} & \xrightarrow{d_{7}} & P_{0} & \xrightarrow{d_{0}} & A & \rightarrow & 0 \\
\cdots & \rightarrow & E_{2} & \xrightarrow{d_{2}} & E_{1} & \xrightarrow{\partial_{7}} & E_{0} & \xrightarrow{\partial_{0}} & A^{\prime} & \rightarrow & 0
\end{array}
$$

are two exact sequences, the first made up of projectives. Then:
(a) There is an extension of f to a morphism of chain complexes:

$$
f_{\bullet}: P_{\bullet} \rightarrow E_{\bullet}
$$

(b) Any two such extensions f_{\bullet} and g_{\bullet} are homotopic maps of chain complexes.

Proof. (a) The map $f \circ d_{0}: P_{0} \rightarrow A^{\prime}$ lifts to $f_{0}: P_{0} \rightarrow E_{0}$ using the facts that ∂_{0} is surjective and P_{0} is projective. Then f_{0} maps $\operatorname{ker}\left(d_{0}\right)=\operatorname{im}\left(d_{1}\right)$ to $\operatorname{ker}\left(\partial_{0}\right)=\operatorname{im}\left(\partial_{1}\right)$ since $f \circ d_{0}=\partial_{0} \circ f_{0}$ and so we may once more lift $f_{0} \circ d_{1}$ to $f_{1}: P_{1} \rightarrow E_{1}$ satisfying $f_{0} \circ d_{1}=\partial_{1} \circ f_{1}$ and continue.
(b) Given two such extensions f_{\bullet} and g_{\bullet} each making the diagram commute:

$$
\begin{array}{lcccccccccc}
\cdots & \rightarrow & P_{2} & \xrightarrow{d_{2}} & P_{1} & \xrightarrow{d_{3}} & P_{0} & \xrightarrow{d_{0}} & A & \rightarrow & 0 \\
& f_{2} \downarrow \downarrow g_{2} & & f_{1} \downarrow \downarrow g_{1} & & f_{0} \downarrow \downarrow g_{0} & & f \downarrow \downarrow f & & \\
\cdots & \rightarrow & E_{2} & \xrightarrow{\partial_{2}} & E_{1} & \xrightarrow[\rightarrow]{\partial_{7}} & E_{0} & \xrightarrow{\partial_{0}} & A^{\prime} & \rightarrow & 0
\end{array}
$$

we also define the homotopy between them inductively. First, we let:

$$
0=h_{-1}: A \rightarrow E_{0} \text { so that } f-f=\partial_{0} \circ h_{-1}
$$

Then we notice that $f_{0}-g_{0}$ maps P_{0} to the kernel of ∂_{0}, so we may choose:

$$
h_{0}: P_{0} \rightarrow E_{1} \text { so that } f_{0}-g_{0}=\partial_{1} \circ h_{0}=\partial_{1} \circ h_{0}+h_{-1} \circ d_{0}
$$

Then $\partial_{1}\left(f_{1}-g_{1}-h_{0} \circ d_{1}\right)=\left(f_{0}-g_{0}\right) \circ d_{1}-\left(\partial_{1} \circ h_{0}\right) \circ d_{1}=0$, so we choose:

$$
h_{1}: P_{1} \rightarrow E_{2} \text { so that } f_{1}-g_{1}-h_{0} \circ d_{1}=\partial_{2} \circ h_{1}
$$

and one more step gets us to the general case. We have $\partial_{2}\left(f_{2}-g_{2}-h_{1} \circ d_{2}\right)=$ $\left(f_{1}-g_{1}\right) \circ d_{2}-\left(\partial_{2} \circ h_{1}\right) \circ d_{2}=\left(f_{1}-g_{1}\right) \circ d_{2}-\left(f_{1}-g_{1}-h_{0} \circ d_{1}\right) \circ d_{2}=0$ and this allows us to choose:

$$
h_{2}: P_{2} \rightarrow E_{3} \text { so that } f_{2}-g_{2}-h_{1} \circ d_{2}=\partial_{3} \circ h_{2}
$$

and off we go. In the end, we have the desired homotoy $h_{i}: P_{i} \rightarrow E_{i+1}$ satisfying:

$$
f_{i}-g_{i}=\partial_{i+1} \circ h_{i}+h_{i-1} \circ d_{i}
$$

Corollary. Let $F: \mathcal{A} \rightarrow \mathcal{B}$ be a right-exact functor of abelian categories and assume \mathcal{A} has enough projectives. Then the sequence of left derived functors:

$$
\left.L_{i} F(A):=H_{i}\left(F\left(P_{\bullet}\right)\right) ; L_{i} F(f: A \rightarrow B)\right)=H_{i}\left(F(f): F\left(P_{\bullet}\right) \rightarrow F\left(Q_{\bullet}\right)\right)
$$

are well-defined (only up to isomorphism, unfortunately) by choosing projective resolutions P_{\bullet} (for A) and Q_{\bullet} (for B) and using Proposition 2.

Proof. We show any two projective resolutions of A give isomorphic homologies:

$$
H_{i}\left(F\left(P_{\bullet}\right)\right) \text { and } H_{i}\left(F\left(P_{\bullet}^{\prime}\right)\right)
$$

To this end, we apply the Proposition twice to get:

and homotopies $h_{i}: P_{i} \rightarrow P_{i+1}$ exhibiting $j_{\bullet} \circ i_{\bullet} \sim 1_{P_{\bullet}}$ (from the Proposition since both sides are lifts of 1_{A}), and $h_{i}^{\prime}: P_{i}^{\prime} \rightarrow P_{i+1}^{\prime}$ exhibiting $i_{\bullet} \circ j_{\bullet} \sim 1_{P_{\bullet}^{\prime}}$.

Now we apply F to everything, and get morphisms $(F \circ i)_{\bullet}$ and $\left(F \circ j_{\bullet}\right)$ and homotopies $(F \circ h)_{\bullet}$ and $\left(F \circ h^{\prime}\right)_{\bullet}$ exhibiting $\left(F \circ j_{\bullet}\right) \circ\left(F \circ i_{\bullet}\right) \sim 1_{F \circ P}$ and $(F \circ i) \bullet \circ$ $(F \circ j) \bullet \sim 1_{F \circ P^{\prime}}$. Since homotopic maps of complexes induce the same maps on homology, it follows that each $H_{i}(F \circ i): H_{i}(F(P)) \rightarrow H_{i}\left(F\left(P^{\prime}\right)\right)$ is an isomorphism, with inverse $H_{i}(F \circ j)$.

The Corollary then follows (except for the troubling isomorphism business) by applying Proposition 2 to P_{\bullet} and Q_{\bullet} and $f: A \rightarrow B$.

Theorem 3. Given a right-exact functor $F: \mathcal{A} \rightarrow \mathcal{B}$ and a short-exact sequence:

$$
(*) 0 \rightarrow A \rightarrow A^{\prime} \rightarrow A^{\prime \prime} \rightarrow 0
$$

in an abelian category \mathcal{A} with enough projectives, there is a long exact sequence:

$$
\rightarrow L_{1} F\left(A^{\prime}\right) \rightarrow L_{1} F\left(A^{\prime \prime}\right) \rightarrow F(A) \rightarrow F\left(A^{\prime}\right) \rightarrow F\left(A^{\prime \prime}\right) \rightarrow 0
$$

of objects of \mathcal{B}.
Proof. Choose projective resolutions: $P_{\bullet} \rightarrow A$ and $P_{\bullet}^{\prime \prime} \rightarrow A^{\prime \prime}$. We will fashion a third projective resolution of A^{\prime} that fits in a short exact sequence:

$$
0 \rightarrow P_{\bullet} \rightarrow P_{\bullet}^{\prime} \rightarrow P_{\bullet}^{\prime \prime} \rightarrow 0
$$

of chain complexes, which remains short-exact after applying the functor F to each of the complexes. The Zigzag Lemma then gives the desired long exact sequence among the homology objects of $F\left(P_{\bullet}\right), F\left(P_{\bullet}^{\prime}\right)$ and $F\left(P_{\bullet}^{\prime \prime}\right)$, which is the result.

In fact, the terms of P_{\bullet}^{\prime} are direct sums $P_{i}^{\prime}=P_{i} \oplus P_{i}^{\prime \prime}$ and the horizontal maps are the standard inclusions and projections:

$$
0 \rightarrow P_{i} \xrightarrow{\iota} P_{i} \oplus P_{i}^{\prime \prime} \xrightarrow{q} P_{i}^{\prime \prime} \rightarrow 0
$$

which explains why these horizontal sequences remain exact after applying F.

In the diagram below, the map $d_{0}^{\prime \prime}: P_{0}^{\prime \prime} \rightarrow B^{\prime \prime}$ lifts (because $P_{0}^{\prime \prime}$ is a projective) to a map $P_{0}^{\prime \prime} \rightarrow B^{\prime}$, and then we obtain a commutative diagram:
with d_{0}^{\prime} defined (and surjective by the five lemma...or rather the first four lemma!) using the universal property of the coproduct. Then we consider:

$$
0 \rightarrow \operatorname{ker}\left(d_{0}\right) \rightarrow \operatorname{ker}\left(d_{0}^{\prime}\right) \rightarrow \operatorname{ker}\left(d_{0}^{\prime \prime}\right) \rightarrow 0
$$

which is exact (by the snake lemma) giving a diagram just as the one above:

$$
\begin{array}{ccccccc}
P_{1} & \rightarrow & P_{1} \oplus P_{1}^{\prime} & \rightarrow & P_{1}^{\prime \prime} & & \\
& \downarrow d_{1} & \searrow & \downarrow d_{1}^{\prime} & \swarrow & \downarrow d_{1}^{\prime \prime} & \\
\\
0 & \rightarrow & \operatorname{ker}\left(d_{0}\right) & \rightarrow & \operatorname{ker}\left(d_{0}^{\prime}\right) & \rightarrow & \operatorname{ker}\left(d_{0}^{\prime \prime}\right)
\end{array} \rightarrow
$$

with surjective vertical maps, etc.
Example. The left derived functors of the tensor functor $T_{M}(N)=N \otimes_{R} M$ are:

$$
\operatorname{Tor}_{i}^{R}(N, M):=L_{i} T_{M}(N)
$$

Thus, for example, to compute $\operatorname{Tor}_{i}(M, k)$, we will use the (free) Koszul resolution:

$$
0 \rightarrow k[x, y] \xrightarrow{(-y, x)} k[x, y] \oplus k[x, y] \xrightarrow{x+y} k[x, y] \rightarrow k \rightarrow 0
$$

for k, and then we obtain $\operatorname{Tor}_{i}(M, k)$ as the homologies of the sequence:

$$
M \xrightarrow{(-y, x)} M \oplus M \xrightarrow{x+y} M
$$

(since $\left.M \otimes_{R} R=M\right)$. Thus, for instance when $M=k$, all maps are zero(!) and:

$$
\operatorname{Tor}_{2}(k, k)=k, \operatorname{Tor}_{1}(k, k)=k^{2} \text { and } \operatorname{Tor}_{0}(k, k)=k \otimes_{R} k=k
$$

When $M=k[y]=k[x, y] /\langle x\rangle$, only the x map is zero, and we get:

$$
\operatorname{Tor}_{2}(k[y], k)=0, \operatorname{Tor}_{1}(k[y], k)=k \text { and } \operatorname{Tor}_{0}(k[y], k)=k \otimes_{R} k[y]=k
$$

Or we could resolve $k[y]$ instead: $0 \rightarrow k[x, y] \xrightarrow{x} k[x, y] \rightarrow k[y] \rightarrow 0$ and then:

$$
M \xrightarrow{x} M
$$

computes $\operatorname{Tor}_{i}(M, k[y])$, so e.g. $\operatorname{Tor}_{i}(k, k[y])=\operatorname{Tor}_{i}(k[y], k]$. This is no accident.
Finally, given the short-exact sequence:

$$
0 \rightarrow k[y] \xrightarrow{y} k[y] \rightarrow k \rightarrow 0
$$

we can get a long exact sequence of Tor's by applying the functor $\otimes k$. This gives:

$$
0 \rightarrow \operatorname{Tor}_{2}(k, k) \rightarrow \operatorname{Tor}_{1}(k[y], k) \xrightarrow{0} \operatorname{Tor}_{1}(k[y], k) \rightarrow \operatorname{Tor}_{1}(k, k) \rightarrow k \xrightarrow{0} k \rightarrow k \rightarrow 0
$$

Remark. If R is a PID, then every finitely generated module N resolves as:

$$
0 \rightarrow R^{m} \rightarrow R^{n} \rightarrow N \rightarrow 0
$$

for some free modules R^{m} and R^{n}. It follows that $\operatorname{Tor}_{i}(M \otimes N)=0$ when $i>1$. This is, in particular, the case for finitely generated abelian groups.

Meanwhile, over in Opposite Land...

By reversing all arrows and replacing projectives with injectives, we get:
3 Theorem: Given a left-exact functor $G: \mathcal{A} \rightarrow \mathcal{B}$ from an abelian category \mathcal{A} with enough injectives, we obtain right derived functors:

$$
R^{i} G(A)=H_{i}\left(G \circ I_{\bullet} \text { and } R^{i} G\left(f: A \rightarrow A^{\prime}\right)\right.
$$

where I_{\bullet} is an injective resolution of A, via 2 Proposition applied with arrows reversed and injectives in place of projectives. Then every short-exact sequence:

$$
0 \rightarrow A \rightarrow A^{\prime} \rightarrow A^{\prime \prime} \rightarrow 0
$$

induces a long exact sequence of objects of \mathcal{B} :

$$
0 \rightarrow G(A) \rightarrow G\left(A^{\prime}\right) \rightarrow G\left(A^{\prime \prime}\right) \rightarrow R^{1} G(A) \rightarrow R^{1} G\left(A^{\prime}\right) \rightarrow R^{1} G\left(A^{\prime \prime}\right) \rightarrow \cdots
$$

Example. The right-derived functors of the left-exact $F_{M}=\operatorname{Hom}_{R}(M, \cdot)$ are:

$$
\operatorname{Ext}_{R}^{i}(M, N):=R^{i} F_{M}(N), \text { the Ext modules }
$$

Thus, for example, letting $M=N^{\prime \prime}$, we have a long exact sequence:

$$
0 \rightarrow \operatorname{Hom}\left(N^{\prime \prime}, N\right) \xrightarrow{f_{*}} \operatorname{Hom}\left(N^{\prime \prime}, N^{\prime}\right) \xrightarrow{g_{*}} \operatorname{Hom}\left(N^{\prime \prime}, N^{\prime \prime}\right) \xrightarrow{\delta^{1}} \operatorname{Ext}^{1}\left(N^{\prime \prime}, N\right) \rightarrow \cdots
$$

associated to any short exact sequence of the form

$$
(*) 0 \rightarrow N \rightarrow N^{\prime} \rightarrow N^{\prime \prime} \rightarrow 0
$$

and the extension class $\epsilon(*):=\delta\left(1_{N^{\prime \prime}}\right) \in \operatorname{Ext}^{1}\left(N^{\prime \prime}, N\right)$ of the sequence is zero if and only if $1_{N^{\prime \prime}}$ is in the image of g_{*}, if and only if the sequence $(*)$ splits.

Interestingly, there is a converse to this. Given $\epsilon \in \operatorname{Ext}^{1}\left(N^{\prime \prime}, N\right)$, we can fashion a short exact sequence $(*)$ (in particular, constructing the module N^{\prime} in the middle) with $\epsilon(*)=\epsilon$. Starting with an injective resolution:

$$
0 \rightarrow N \xrightarrow{d_{0}} I_{0} \xrightarrow{d_{1}} I_{1} \xrightarrow{d_{2}} I_{2} \rightarrow \cdots \text { and }
$$

we have, by definition, that ϵ is an element of the middle homology of:

$$
\operatorname{Hom}\left(N^{\prime \prime}, I_{0}\right) \xrightarrow{d_{1_{*}^{*}}} \operatorname{Hom}\left(N^{\prime \prime}, I_{1}\right) \xrightarrow{d_{2 *}} \operatorname{Hom}\left(N^{\prime \prime}, I_{2}\right)
$$

i.e. $\epsilon \in \operatorname{Hom}\left(N^{\prime \prime}, \operatorname{ker}\left(d_{2}\right)\right)=\operatorname{Hom}\left(N^{\prime \prime}, \operatorname{im}\left(d_{1}\right)\right)$ (modulo the image of $\left.d_{1 *}\right)$.

Now we add an injective resolution of $N^{\prime \prime}$ to the mix:

$$
0 \rightarrow N^{\prime \prime} \xrightarrow{d_{0}{ }^{\prime \prime}} I_{0}{ }^{\prime \prime} \xrightarrow{d_{1}{ }^{\prime \prime}} I_{1}{ }^{\prime \prime} \xrightarrow{d_{2}{ }^{\prime \prime}} I_{2}{ }^{\prime \prime} \rightarrow \cdots
$$

Then, using the injectivity of I_{1}, we obtain $f: I_{0}{ }^{\prime \prime} \rightarrow I_{1}$:

$$
\begin{array}{llll}
I_{1} & & \\
\uparrow \epsilon & \nwarrow & \\
N^{\prime \prime} & \xrightarrow{d_{0}{ }^{\prime \prime}} & & I_{0}{ }^{\prime \prime}
\end{array}
$$

which we use to define a homomorphism:

$$
\Phi=\left[\begin{array}{cl}
d_{1} & f \\
0 & d_{1}^{\prime \prime}
\end{array}\right]: I_{0} \oplus I_{0}^{\prime \prime} \rightarrow I_{1} \oplus I_{1}^{\prime \prime}
$$

and then we obtain a commuting diagram:

$$
\begin{array}{lllllllll}
0 & \rightarrow & I_{1} & \rightarrow & I_{1} \oplus I_{1}^{\prime \prime} & \rightarrow & I_{1}^{\prime \prime} & \rightarrow & 0 \\
& & \uparrow d_{1} & & \uparrow \Phi & & \uparrow d_{1}^{\prime \prime} & & \\
0 & \rightarrow & I_{0} & \rightarrow & I_{0} \oplus I_{0}^{\prime \prime} & \rightarrow & I_{0}^{\prime \prime} & \rightarrow & 0
\end{array}
$$

with sequence (from the snake lemma):

$$
0 \rightarrow N \rightarrow \operatorname{ker}(\Phi) \rightarrow N^{\prime \prime} \xrightarrow{\delta} \operatorname{coker}\left(d_{1}\right) \rightarrow \operatorname{coker}(\Phi) \rightarrow \operatorname{coker}\left(d_{1}^{\prime \prime}\right) \rightarrow 0
$$

But if $i_{1}, j_{1} \in I_{1}$ and $\left(i_{1}, 0\right)-\left(j_{1}, 0\right)=0$ as an element of $\operatorname{coker}(\Phi)$, then
$\left(i_{1}, 0\right)-\left(j_{1}, 0\right)=\left(i_{1}-j_{1}, 0\right)=\Phi\left(i_{0}, i_{0}^{\prime \prime}\right)=\left(d_{1}\left(i_{0}\right)+f\left(i_{0}^{\prime \prime}\right), d_{1}^{\prime \prime}\left(i_{0}^{\prime \prime}\right)\right)$ for some $\left(i_{0}, i_{0}^{\prime \prime}\right)$
and then it follows that $d_{1}^{\prime \prime}\left(i_{0}^{\prime \prime}\right)=0$, so $i_{0}^{\prime \prime}=d_{0}^{\prime \prime}\left(n^{\prime \prime}\right)$ for some $n^{\prime \prime} \in N^{\prime \prime}$ and also that $f\left(i_{0}^{\prime \prime}\right)=\epsilon\left(n^{\prime \prime}\right) \in \operatorname{ker}\left(d_{2}\right)=\operatorname{im}\left(d_{1}\right)$, so $i_{1}-j_{1}=d_{1}\left(i_{0}\right)+f\left(i_{0}^{\prime \prime}\right)$ is in the image of d_{1} and $i_{1}-j_{1}=0$ as an element of $\operatorname{coker}\left(d_{1}\right)$. All this is to say that the map following δ is injective, and so by exactness δ is the zero map! The truncated sequence:

$$
(*) 0 \rightarrow N \rightarrow N^{\prime}=\operatorname{ker}(\Phi) \rightarrow N^{\prime \prime} \xrightarrow{\delta} 0
$$

is the desired short exact sequence with $\epsilon(*)=\epsilon$.
Problem. It is difficult to work with injective resolutions.
For the Ext functors there is a convenient fix, which we give without proof.
Theorem 4. Instead of computing $\operatorname{Ext}^{i}(M, N)$ as

$$
H_{i}\left(\operatorname{Hom}\left(M, I_{\bullet}\right)\right)
$$

for an injective resolution I_{\bullet} of N, we may instead compute it as:

$$
H_{i}\left(\operatorname{Hom}\left(P_{\bullet}, N\right)\right)
$$

for a projective resolution of M (and the contravariant functor $F^{N}=\operatorname{Hom}(\bullet, N)$).
Remark. The same drill as for the 3 Theorems allow one to conclude that F^{N} has right derived functors, computed as $H_{i}\left(\operatorname{Hom}\left(P_{\bullet}, N\right)\right)$. The surprising part of the Theorem is that this yields the same modules $\operatorname{Ext}^{i}(M, N)$.
Examples. The following sequence of abelian groups is clearly not split:

$$
(*) 0 \rightarrow \mathbb{Z} \xrightarrow{(2,1)} \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z} \xrightarrow{1+4} \mathbb{Z} / 6 \mathbb{Z} \rightarrow 0
$$

and so determines a nonzero class $\epsilon(*) \in \operatorname{Ext}^{1}(\mathbb{Z} / 6 \mathbb{Z}, \mathbb{Z})$. We may compute this via:

$$
0 \rightarrow \mathbb{Z} \xrightarrow{6} \mathbb{Z} \rightarrow \mathbb{Z} / 6 \mathbb{Z} \rightarrow 0
$$

which we hit with the functor $F^{\mathbb{Z}}$ to get:

$$
\mathbb{Z}=\operatorname{Hom}(\mathbb{Z}, \mathbb{Z}) \stackrel{6^{*}}{\leftarrow} \operatorname{Hom}(\mathbb{Z}, \mathbb{Z})=\mathbb{Z}
$$

from which we conclude that $\operatorname{Ext}^{1}(\mathbb{Z}, \mathbb{Z} / 6 \mathbb{Z})=\mathbb{Z} / 6 \mathbb{Z}$.
We know that the zero extension class gives the split sequence, but:
Question. Which extension class(es) give:

$$
(*) 0 \rightarrow \mathbb{Z} \xrightarrow{(2,1)} \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z} \xrightarrow{1+4} \mathbb{Z} / 6 \mathbb{Z} \rightarrow 0 \text { ? }
$$

and which extension class(es) give: $(* *) 0 \rightarrow \mathbb{Z} \xrightarrow{6} \mathbb{Z} \rightarrow \mathbb{Z} / 6 \mathbb{Z} \rightarrow 0$?
and are we missing any other short exact sequences?
Popup Ad. Let X be a topological space, and consider the category \mathcal{X} with:
The objects of \mathcal{X} are the open subsets U of X.
The morphisms of \mathcal{X} are the inclusions $U \subseteq V$.

A contravariant functor $\mathcal{A}: \mathcal{X} \rightarrow \mathcal{A} b$ (to the category of abelian groups) is a presheaf of abelian groups on X. In other words, a presheaf \mathcal{F} consists of:
(i) An abelian group $\mathcal{A}(U)$ attached to each open subset, and
(ii) Restriction maps $\rho_{V, U}: \mathcal{A}(V) \rightarrow \mathcal{A}(U)$ attached to each $U \subseteq V$ such that:

- $\rho_{U, U}=1_{\mathcal{A}(U)}$ and:
- $\rho_{V, U} \circ \rho_{W, V}=\rho_{W, U}: \mathcal{A}(W) \rightarrow \mathcal{A}(U)$ whenever $U \subseteq V \subseteq W$.

Example. The constant presheaf A (for a fixed abelian group A) is defined by:

$$
A(\emptyset)=0, A(U)=A \text { and } \rho_{V, U}=1_{A} \text { for all } U \neq \emptyset
$$

Rather amazingly, this is an interesting presheaf. It is associated to:
The locally constant sheaf A^{+}, defined by:
$A^{+}(U)=\{$ continuous maps $f: U \rightarrow A$ for the discrete topology on $A\}$.
$A^{+}(U \subseteq V)$ is the restriction of continuous functions $f: V \rightarrow A$ to $\left.f\right|_{U}: U \rightarrow A$.
Note that if U is connected, then $A(U)=A^{+}(U)$, since the continuous maps from a connected set to a set with the discrete topology are the constant maps! But if U has n connected components, then $A^{+}(U)=A^{n}$ and the restriction maps to each connected component are the projections.

There is a lot to say about this, but suffice it for the purposes of this teaser to say that there is a category of sheaves of abelian groups on the fixed topological space X with enough injectives, and that the covariant global section functor

$$
\Gamma: \mathcal{A} \rightarrow \mathrm{Ab} ; \mathcal{A} \mapsto \mathcal{A}(X)
$$

is left-exact, which then defines right derived functors of the global section functor, which are the cohomology groups:

$$
H^{i}(X, A):=R^{i} \Gamma(X, A)
$$

These may be computed by taking a "good open cover" of X, and are basically dual to the singular cohomology of X (when $A=\mathbb{Z}$) that we discussed in an earlier popup topological ad.

