Abstract Algebra. Math 6310. Bertram/Utah 2022-23.

Localization

Let D be an integral domain.

Definition. A subset $S \subset D$ is *multiplicative* if:

 $0 \notin S, 1 \in S$ and $s, t \in S$ implies $st \in S$

Examples. (a) The abelian group D^* of units in D is multiplicative.

(b) The set $\{1, f, f^2, ...\}$ of powers of $f \neq 0$ is multiplicative.

(c) The complement of an ideal $I \subset D$ is multiplicative if and only if I is prime.

Proposition 1. Given a multiplicative subset $S \subset D$, let:

$$S^{-1}D = \left\{\frac{r}{s} \mid r \in D, s \in S\right\} / \sim$$

where

$$\frac{r_1}{s_1} \sim \frac{r_2}{s_2}$$
 if and only if $r_1 s_2 - r_2 s_1 = 0$

and equip $S^{-1}D$ with fraction addition and multiplication:

$$\frac{r_1}{s_1} + \frac{r_2}{s_2} = \frac{r_1 s_2 + r_2 s_1}{s_1 s_2} \text{ and } \frac{r_1}{s_1} \cdot \frac{r_2}{s_2} = \frac{r_1 r_2}{s_1 s_2}$$

Then $S^{-1}D$ is an integral domain with $0 = \frac{0}{1}, 1 = \frac{1}{1}$ and injective homomorphism:

$$f: D \to S^{-1}D$$
 given by $f(r) = \frac{r}{1}$

Proof. This mainly amounts to proving well-definedness.

(i) \sim is an equivalence relation. Transitivity is the only non-obvious property:

$$r_1s_2 - r_2s_1 = 0, r_2s_3 - r_3s_2 = 0 \Rightarrow$$
$$s_2(r_1s_3 - r_3s_1) = s_3(r_1s_2 - r_2s_1) + s_1(r_2s_3 - r_3s_2) = 0$$
$$\Rightarrow r_1s_3 - r_3s_1 = 0$$

(ii) Addition is determined by passing to common denominators:

$$\frac{r_1}{s_1} + \frac{r_2}{s_2} = \frac{r_1 s_2}{s_1 s_2} + \frac{r_2 s_1}{s_1 s_2}$$

as well as the distributive law and requirement that:

$$\frac{r}{1} \cdot \frac{1}{s} = \frac{r}{s}$$

which also determines multiplication. But you should check this is well-defined.

(iii) $S^{-1}D$ is an integral domain, since:

$$\frac{r_1r_2}{s_1s_2} = \frac{0}{1}$$
 if and only if $r_1r_2 = 0$ if and only if either $r_1 = 0$ or $r_2 = 0$

since ${\cal D}$ has no zero divisors.

Remarks. (a) If $S \subset D^*$, then $f: D \to S^{-1}D$ is an isomorphism with

$$\frac{r}{s} = \frac{s^{-1}r}{1}$$

(b) If $S = D - \{0\}$, then $S^{-1}D$ is a field. This is the *field of fractions* k(D) of the domain D. All other domains $S^{-1}D$ sit in between D and the field of fractions:

$$D \subset S^{-1}D \subset k(D)$$

(c) If
$$S = \{1, f, ...\}$$
, then $S^{-1}D$ is denoted by D_f , and:

$$q: D[x] \to D_f; q(x) = 1/f$$
 is surjective with kernel $I = \langle 1 - fx \rangle$

so D_f is a quotient ring of the polynomial ring.

(d) If $S = P^c$ for $P \subset D$, then $S^{-1}D$ is denoted by D_P . This is usually not a quotient ring of a polynomial ring $D[x_1, ..., x_n]$ with any (finite) number of variables. We'll see this when we prove the Hilbert Nullstellensatz.

Concrete Example. Let $D = \mathbb{Z}$. Then:

(a) $k(\mathbb{Z}) = \mathbb{Q}$, the field of rational numbers.

(b) $\mathbb{Z}_n = \mathbb{Z}[\frac{1}{n}]$ are the rational numbers whose denominators (in lowest terms) divide some power of n. Note that:

$$\mathbb{Z}_n = \mathbb{Z}_{p_1 \cdots p_r} = \mathbb{Z}[\frac{1}{p_1}, \dots, \frac{1}{p_r}]$$

where $p_1, ..., p_r$ are the distinct prime factors of n.

(c) $\mathbb{Z}_{\langle p \rangle}$ are the rational numbers whose denominators (in lowest terms) are not divisible by p. Sometimes this is written \mathbb{Z}_p , which is confusing given (b). In fact, there are a whole lot of rings that might be written as \mathbb{Z}_p , so context is everything!

Let D be a UFD. Then an element:

$$\frac{r}{s} \in k(D)$$

is in lowest terms if the prime factorizations of r and s contain no associated common primes. This ratio is, moreover, **unique** up to multiplying numerator and denominator by the same unit in D. A polynomial $f(x) \in D[x]$ is in lowest terms if the factorizations of the coefficients of f(x) contain no associated common primes. Gauss' Lemma relies on:

Proposition 2. If $f(x), g(x) \in D[x]$ are in lowest terms, then so is f(x)g(x).

Proof. Let $f(x) = a_d x^d + ... + a_0, g(x) = b_e x^e + ... + b_0$ and let $p \in D$ be prime. Then p does not divide all the a's and it does not divide all the b's, so:

p divides a_0, \ldots, a_{k-1} but not a_k and p divides b_0, \ldots, b_{l-1} but not b_l

for some $k \leq d$ and $l \leq e$. Then p does not divide the coefficient:

$$\cdots + a_{k+1}b_{l-1} + a_kb_l + a_{k-1}b_{l+1} + \cdots$$

of x^{k+l} in the product f(x)g(x). So the product is in lowest terms!

Now we can prove:

Gauss' Lemma. If D is a UFD, then D[x] is a UFD.

Proof. First of all, k(D)[x] is a Euclidean domain, so it is also a PID and UFD. Now suppose $f(x) \in D[x]$. Since a prime in D is also a prime in D[x], we may remove all the common prime factors of the coefficients of f(x) and write it as

$$p_1 \cdots p_r \cdot g(x)$$
 where $g(x) \in D[x]$ is lowest terms

$$g(x) = h_1(x) \cdots h_s(x)$$
 where each $h_i(x) \in k(D)[x]$ is prime

There are now unique fractions (in lowest terms) so that the polynomials:

$$q_i(x) = \left(\frac{r_i}{s_i}\right) h_i(x) \in D[x]$$
 are in lowest terms

and then it follows from the Proposition that both:

$$g(x)$$
 and $q_1(x)\cdots q_s(x) = \left(\prod \frac{r_i}{s_i}\right)g(x) = \left(\frac{r}{s}\right)g(x) \in D[x]$ are in lowest terms

It follows that r and s (chosen to have no common prime factors) have no prime factors at all! So $u = r/s \in D^*$ and:

$$f(x) = u^{-1}p_1 \cdots p_r \cdot q_1(x) \cdots q_s(x)$$

is the desired factorization into primes.

Example. In $\mathbb{Q}[x]$, we have:

$$x^{2} - 1 = \left(\frac{2}{3}x - \frac{2}{3}\right)\left(\frac{3}{2}x + \frac{3}{2}\right)$$

which we can put into (slightly inefficient, to play devil's advocate) lowest terms:

$$-\frac{3}{2}\left(\frac{2}{3}x - \frac{2}{3}\right) = -x + 1 \text{ and } \frac{2}{3}\left(\frac{3}{2}x + \frac{3}{2}\right) = x + 1$$

and then

$$x^{2} - 1 = (-1)(-x + 1)(x - 1)$$
 with the unit $u = -1$

Eisenstein's Criterion. If D is a UFD, $f(x) \in D[x], p \in D$ is a prime and:

(a) p divides all the coefficients of f(x) except the leading coefficient.

(b) p^2 does not divide the constant term of f(x).

Then f(x) is irreducible as a polynomial in k(D)[x].

Proof. By Gauss' lemma, if f(x) is reducible in k(D)[x], then it factors:

f(x) = g(h)h(x) by polynomials of smaller degree in D[x]

Let $pD \subset D$ be the ideal generated by p and note that $pD[x] \subset D[x]$ is also a prime ideal, since:

$$D[x]/pD[x] = (D/p)[x]$$

By (a) above, if we let $\overline{f}(x) = f(x) + pD[x]$, then we have:

$$a_d x^d = \overline{f}(x) = \overline{g}(x) \cdot \overline{h}(x) \in (D/p) [x]$$

from which it follows that:

$$\overline{g}(x) = bx^d \text{ and } \overline{h}(x) = cx^{d-e} \text{ for some } e < d \text{ and } b, c \in D/pD$$

But then p divides the constant terms of g(x) and h(x), which violates (b). \Box Example. The polynomials:

$$x^{a-1} + x^{a-2} + \dots + 1 = \frac{x^a - 1}{x - 1} \in \mathbb{Q}[x]$$

are irreducible if and only if a is a prime number. If a = bc, then $x^b - 1 | x^a - 1$. If a = p is prime, apply Eisenstein to $(x + 1)^p - 1$ using the binomial theorem.

Next, let $P \subset D$ be a prime ideal in an integral domain and let:

 $D \subset D_P = S^{-1}D$ be the inclusion of domains in Proposition 1

Proposition 3. (a) There is a unique maximal ideal $\mathfrak{m}_P \subset D_P$.

(b) There are maps between the set of ideals in D_P and the set of ideals in P:

$$\{ \text{ideals } J_P \subset D_P \} \leftrightarrow \{ \text{ideals } J \subset P \subset D \}$$

$$J_P \mapsto D \cap J_P = \{a \in D \mid \frac{a}{1} \in J_P\}; \ J \mapsto J_P := \{\frac{a}{s} \mid a \in J, s \notin P\} / \sim$$

that satisfy:

$$J \subset (J_P \cap D)$$
 and $(J_P \cap D)_P = J_P$

Moreover, if $Q \subset D$ is a *prime* ideal, then $Q_P \subset D_P$ is also prime and $Q = (Q_P \cap D)$. Thus there is a bijection:

{prime ideals
$$Q_P \subset D_P$$
} \leftrightarrow { prime ideals $Q \subset P \subset D$ }

and in particular, \mathfrak{m}_P maps to P under the bijection.

Example. Consider the prime ideal $P = 2\mathbb{Z}$. Then \mathbb{Z}_P has only the ideals:

{0} and
$$\mathfrak{m}^k = \left\{ \frac{a}{s} \mid 2^k \text{ divides } a \text{ and } s \text{ is odd} \right\}$$

but there are lots more ideals contained in $2\mathbb{Z}$ than the ideals $2^k\mathbb{Z}$.

Definition. In general, the ideal $\operatorname{sat}(J) = J_P \cap D$ is called the *saturation* of $J \subset P$ with respect to P and an ideal $J \subset P$ is *saturated* if $J = \operatorname{sat}(J)$.

The Proposition says that prime ideals are saturated.

Exercise. Check that sat(J) = sat(sat(J)), so saturations of ideals are saturated!

Proof of Prop 3. We already know that $I \cap D \subset D$ is an ideal when $I \subset D_P$ is an ideal and it is prime when I is prime. Likewise, if $J \subset D$ is an ideal, then:

$$J_P = \left\{\frac{a}{s} \mid a \in J, \ s \in S\right\} \subset D_P$$

is closed under sums as well as products with elements r/s, so $J_P \subset D_P$ is an ideal. It is a little problematic to think of the ideal in this way, though, because of the equivalence of fractions, since it is possible to have $r/s \in J_P$ without having $r \in J$. Instead, we will use the alternative formulation:

$$J_P = \{ x \in D_P \mid xs \in J \text{ for some } s \in S \}$$

Now suppose $Q \subset P \subset D$ is prime, and $xy \in Q_P$ for some $x, y \in D_P$. Then: $xs_1, ys_2 \in D$ and $xys \in Q$ for some $s_1, s_2, s \notin P$ so $(xs_1)(ys_2)s \in Q$ and xs_1 or $ys_2 \in Q$ so Q_P is prime. Moreover, primeness of Q implies that

$$x \in D$$
 and $xs \in Q \Rightarrow x \in Q$

from which it follows that $Q_P \cap D = Q$. The equality $Q_P = (Q_P \cap D)_P$ is easy. \Box Example. The localizations of polynomial rings:

$$k[x_1, \dots, x_n]_{\mathfrak{m}_p} = \left\{ \frac{f}{g} \mid f, g \in k[x_1, \dots, x_n] \text{ and } g(p) \neq 0 \right\}$$

at the maximal ideal kernels of $ev_p : k[x_1, ..., x_n] \to k$; $ev_p(f) = f(p)$ are the rings of rational functions that are defined in a neighborhood of p.

 $\mathbf{4}$

Definition. A commutative ring R with 1 is a *local ring* if R has a unique maximal ideal \mathfrak{m} which (Zorn's Lemma) necessarily contains all other ideals $I \subset R$.

Remark. In a local ring R, every element of the complement \mathfrak{m}^c is a unit.

Aside from the fields, we've seen one local ring persistently in our examples:

R = k[[x]] with maximal ideal $\mathfrak{m} = \langle x \rangle$

but now we have a machine for producing local rings (D_P, \mathfrak{m}) from any pair (D, P) consisting of a domain and a prime ideal.

We finish with an important class of rings (the next simplest after the fields).

Definition. A Noetherian domain *D* satisfying:

(i) D is a local ring with (non-zero) maximal ideal \mathfrak{m} .

(ii) $\mathfrak{m} = \langle \pi \rangle$ is principal

is called a *discrete valuation ring* (DVR).

Proposition 3. Every element $a \in D$ in a DVR is a product:

 $u\pi^r$ for a unique r and $u \in D^*$

Thus the only ideals in a DVR are the principal ideals $\mathfrak{m}^r = \langle \pi^r \rangle$ for $r \geq 1$.

Proof. Every *irreducible* element $a \in D$ is of the form:

$$a = u\pi$$
 for $u \in D^*$

since $a \in \langle \pi \rangle$ is divisible by π , which is not a unit (hence it is an associate of a). Thus the factorization of an arbitrary: $b = a_1 \cdots a_r$ as a product of irreducibles is

$$b = (u_1 \pi) \cdots (u_r \pi) = u \pi^*$$

and the uniqueness is clear by cancellation. For the rest of the proof, note that:

$$\langle u_1 \pi^{r_1}, \dots, u_n \pi^{r_n} \rangle = \langle u_1 \pi^{r_1} \rangle \text{ if } r_1 \leq \dots \leq r_n \quad \Box$$

Thus in particular, a DVR is a local PID (and conversely).

Let D be a DVR and let k(D) be the field of fractions. Then:

 $k(D) = \{ u\pi^r \mid u \in D^* \text{ and } r \in \mathbb{Z} \}$

and the mapping:

$$\nu: k(D)^* \to \mathbb{Z}; \ \nu(u\pi^r) = r$$

has the following properties:

- (i) $\nu(ab) = \nu(a) + \nu(b)$
- (ii) $\nu(a+b) \leq \min(a,b)$ with equality when $\nu(a) \neq \nu(b)$.
- (iii) $D = \{a \in k(D) \mid \nu(a) \ge 0\}$ and $\mathfrak{m} = \{a \in k(D) \mid \nu(a) \ge 1\}.$

A mapping from a field to an ordered abelian group satisfying (i) and (ii) is a *valuation*, and when the ordered abelian group is \mathbb{Z} , then the mapping is a *discrete valuation*. Hence the name.

Definition. A domain D with the property that localization D_P at each non-zero prime ideal is a DVR is called a *Dedekind domain*.

Remark. In number theory, these are the rings of integers in a number field and in algebraic geometry, these are the (coordinate rings of) smooth affine curves.