Abstract Algebra. Math 6310. Bertram/Utah 2022-23.

Localization

Let D be an integral domain.
Definition. A subset $S \subset D$ is multiplicative if:

$$
0 \notin S, 1 \in S \text { and } s, t \in S \text { implies } s t \in S
$$

Examples. (a) The abelian group D^{*} of units in D is multiplicative.
(b) The set $\left\{1, f, f^{2}, \ldots.\right\}$ of powers of $f \neq 0$ is multiplicative.
(c) The complement of an ideal $I \subset D$ is multiplicative if and only if I is prime.

Proposition 1. Given a multiplicative subset $S \subset D$, let:

$$
S^{-1} D=\left\{\left.\frac{r}{s} \right\rvert\, r \in D, s \in S\right\} / \sim
$$

where

$$
\frac{r_{1}}{s_{1}} \sim \frac{r_{2}}{s_{2}} \text { if and only if } r_{1} s_{2}-r_{2} s_{1}=0
$$

and equip $S^{-1} D$ with fraction addition and multiplication:

$$
\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}}=\frac{r_{1} s_{2}+r_{2} s_{1}}{s_{1} s_{2}} \text { and } \frac{r_{1}}{s_{1}} \cdot \frac{r_{2}}{s_{2}}=\frac{r_{1} r_{2}}{s_{1} s_{2}}
$$

Then $S^{-1} D$ is an integral domain with $0=\frac{0}{1}, 1=\frac{1}{1}$ and injective homomorphism:

$$
f: D \rightarrow S^{-1} D \text { given by } f(r)=\frac{r}{1}
$$

Proof. This mainly amounts to proving well-definedness.
(i) \sim is an equivalence relation. Transitivity is the only non-obvious property:

$$
\begin{gathered}
r_{1} s_{2}-r_{2} s_{1}=0, r_{2} s_{3}-r_{3} s_{2}=0 \Rightarrow \\
s_{2}\left(r_{1} s_{3}-r_{3} s_{1}\right)=s_{3}\left(r_{1} s_{2}-r_{2} s_{1}\right)+s_{1}\left(r_{2} s_{3}-r_{3} s_{2}\right)=0 \\
\Rightarrow r_{1} s_{3}-r_{3} s_{1}=0
\end{gathered}
$$

(ii) Addition is determined by passing to common denominators:

$$
\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}}=\frac{r_{1} s_{2}}{s_{1} s_{2}}+\frac{r_{2} s_{1}}{s_{1} s_{2}}
$$

as well as the distributive law and requirement that:

$$
\frac{r}{1} \cdot \frac{1}{s}=\frac{r}{s}
$$

which also determines multiplication. But you should check this is well-defined.
(iii) $S^{-1} D$ is an integral domain, since:

$$
\frac{r_{1} r_{2}}{s_{1} s_{2}}=\frac{0}{1} \text { if and only if } r_{1} r_{2}=0 \text { if and only if either } r_{1}=0 \text { or } r_{2}=0
$$

since D has no zero divisors.
Remarks. (a) If $S \subset D^{*}$, then $f: D \rightarrow S^{-1} D$ is an isomorphism with

$$
\frac{r}{s}=\frac{s^{-1} r}{1}
$$

(b) If $S=D-\{0\}$, then $S^{-1} D$ is a field. This is the field of fractions $k(D)$ of the domain D. All other domains $S^{-1} D$ sit in between D and the field of fractions:

$$
D \subset S^{-1} D \subset k(D)
$$

(c) If $S=\{1, f, \ldots\}$, then $S^{-1} D$ is denoted by D_{f}, and:

$$
q: D[x] \rightarrow D_{f} ; q(x)=1 / f \text { is surjective with kernel } I=\langle 1-f x\rangle
$$

so D_{f} is a quotient ring of the polynomial ring.
(d) If $S=P^{c}$ for $P \subset D$, then $S^{-1} D$ is denoted by D_{P}. This is usually not a quotient ring of a polynomial ring $D\left[x_{1}, \ldots, x_{n}\right]$ with any (finite) number of variables. We'll see this when we prove the Hilbert Nullstellensatz.

Concrete Example. Let $D=\mathbb{Z}$. Then:
(a) $k(\mathbb{Z})=\mathbb{Q}$, the field of rational numbers.
(b) $\mathbb{Z}_{n}=\mathbb{Z}\left[\frac{1}{n}\right]$ are the rational numbers whose denominators (in lowest terms) divide some power of n. Note that:

$$
\mathbb{Z}_{n}=\mathbb{Z}_{p_{1} \cdots p_{r}}=\mathbb{Z}\left[\frac{1}{p_{1}}, \ldots, \frac{1}{p_{r}}\right]
$$

where p_{1}, \ldots, p_{r} are the distinct prime factors of n.
(c) $\mathbb{Z}_{\langle p\rangle}$ are the rational numbers whose denominators (in lowest terms) are not divisible by p. Sometimes this is written \mathbb{Z}_{p}, which is confusing given (b). In fact, there are a whole lot of rings that might be written as \mathbb{Z}_{p}, so context is everything!

Let D be a UFD. Then an element:

$$
\frac{r}{s} \in k(D)
$$

is in lowest terms if the prime factorizations of r and s contain no associated common primes. This ratio is, moreover, unique up to multiplying numerator and denominator by the same unit in D. A polynomial $f(x) \in D[x]$ is in lowest terms if the factorizations of the coefficients of $f(x)$ contain no associated common primes. Gauss' Lemma relies on:

Proposition 2. If $f(x), g(x) \in D[x]$ are in lowest terms, then so is $f(x) g(x)$.
Proof. Let $f(x)=a_{d} x^{d}+\ldots+a_{0}, g(x)=b_{e} x^{e}+\cdots+b_{0}$ and let $p \in D$ be prime. Then p does not divide all the a 's and it does not divide all the b 's, so:
p divides a_{0}, \ldots, a_{k-1} but not a_{k} and p divides b_{0}, \ldots, b_{l-1} but not b_{l} for some $k \leq d$ and $l \leq e$. Then p does not divide the coefficient:

$$
\cdots+a_{k+1} b_{l-1}+a_{k} b_{l}+a_{k-1} b_{l+1}+\cdots
$$

of x^{k+l} in the product $f(x) g(x)$. So the product is in lowest terms!
Now we can prove:
Gauss' Lemma. If D is a UFD, then $D[x]$ is a UFD.
Proof. First of all, $k(D)[x]$ is a Euclidean domain, so it is also a PID and UFD. Now suppose $f(x) \in D[x]$. Since a prime in D is also a prime in $D[x]$, we may remove all the common prime factors of the coefficients of $f(x)$ and write it as

$$
p_{1} \cdots p_{r} \cdot g(x) \text { where } g(x) \in D[x] \text { is lowest terms }
$$

We may factor the polynomial $g(x)$ in the Euclidean domain $k(D)[x]$ to get:

$$
g(x)=h_{1}(x) \cdots h_{s}(x) \text { where each } h_{i}(x) \in k(D)[x] \text { is prime }
$$

There are now unique fractions (in lowest terms) so that the polynomials:

$$
q_{i}(x)=\left(\frac{r_{i}}{s_{i}}\right) h_{i}(x) \in D[x] \text { are in lowest terms }
$$

and then it follows from the Proposition that both:
$g(x)$ and $q_{1}(x) \cdots q_{s}(x)=\left(\prod \frac{r_{i}}{s_{i}}\right) g(x)=\left(\frac{r}{s}\right) g(x) \in D[x]$ are in lowest terms
It follows that r and s (chosen to have no common prime factors) have no prime factors at all! So $u=r / s \in D^{*}$ and:

$$
f(x)=u^{-1} p_{1} \cdots p_{r} \cdot q_{1}(x) \cdots q_{s}(x)
$$

is the desired factorization into primes.
Example. In $\mathbb{Q}[x]$, we have:

$$
x^{2}-1=\left(\frac{2}{3} x-\frac{2}{3}\right)\left(\frac{3}{2} x+\frac{3}{2}\right)
$$

which we can put into (slightly inefficient, to play devil's advocate) lowest terms:

$$
-\frac{3}{2}\left(\frac{2}{3} x-\frac{2}{3}\right)=-x+1 \text { and } \frac{2}{3}\left(\frac{3}{2} x+\frac{3}{2}\right)=x+1
$$

and then

$$
x^{2}-1=(-1)(-x+1)(x-1) \text { with the unit } u=-1
$$

Eisenstein's Criterion. If D is a UFD, $f(x) \in D[x], p \in D$ is a prime and:
(a) p divides all the coefficients of $f(x)$ except the leading coefficient.
(b) p^{2} does not divide the constant term of $f(x)$.

Then $f(x)$ is irreducible as a polynomial in $k(D)[x]$.
Proof. By Gauss' lemma, if $f(x)$ is reducible in $k(D)[x]$, then it factors:

$$
f(x)=g(h) h(x) \text { by polynomials of smaller degree in } D[x]
$$

Let $p D \subset D$ be the ideal generated by p and note that $p D[x] \subset D[x]$ is also a prime ideal, since:

$$
D[x] / p D[x]=(D / p)[x]
$$

By (a) above, if we let $\bar{f}(x)=f(x)+p D[x]$, then we have:

$$
a_{d} x^{d}=\bar{f}(x)=\bar{g}(x) \cdot \bar{h}(x) \in(D / p)[x]
$$

from which it follows that:

$$
\bar{g}(x)=b x^{d} \text { and } \bar{h}(x)=c x^{d-e} \text { for some } e<d \text { and } b, c \in D / p D
$$

But then p divides the constant terms of $g(x)$ and $h(x)$, which violates (b).
Example. The polynomials:

$$
x^{a-1}+x^{a-2}+\cdots+1=\frac{x^{a}-1}{x-1} \in \mathbb{Q}[x]
$$

are irreducible if and only if a is a prime number. If $a=b c$, then $x^{b}-1 \mid x^{a}-1$. If $a=p$ is prime, apply Eisenstein to $(x+1)^{p}-1$ using the binomial theorem.

Next, let $P \subset D$ be a prime ideal in an integral domain and let:

$$
D \subset D_{P}=S^{-1} D \text { be the inclusion of domains in Proposition } 1
$$

Proposition 3. (a) There is a unique maximal ideal $\mathfrak{m}_{P} \subset D_{P}$.
(b) There are maps between the set of ideals in D_{P} and the set of ideals in P :

$$
\begin{gathered}
\text { \{ideals } \left.J_{P} \subset D_{P}\right\} \leftrightarrow\{\text { ideals } J \subset P \subset D\} \\
J_{P} \mapsto D \cap J_{P}=\left\{a \in D \left\lvert\, \frac{a}{1} \in J_{P}\right.\right\} ; J \mapsto J_{P}:=\left\{\left.\frac{a}{s} \right\rvert\, a \in J, s \notin P\right\} / \sim
\end{gathered}
$$

that satisfy:

$$
J \subset\left(J_{P} \cap D\right) \text { and }\left(J_{P} \cap D\right)_{P}=J_{P}
$$

Moreover, if $Q \subset D$ is a prime ideal, then $Q_{P} \subset D_{P}$ is also prime and $Q=\left(Q_{P} \cap D\right)$. Thus there is a bijection:

$$
\left\{\text { prime ideals } Q_{P} \subset D_{P}\right\} \leftrightarrow\{\text { prime ideals } Q \subset P \subset D\}
$$

and in particular, \mathfrak{m}_{P} maps to P under the bijection.
Example. Consider the prime ideal $P=2 \mathbb{Z}$. Then \mathbb{Z}_{P} has only the ideals:

$$
\{0\} \text { and } \mathfrak{m}^{k}=\left\{\left.\frac{a}{s} \right\rvert\, 2^{k} \text { divides } a \text { and } s \text { is odd }\right\}
$$

but there are lots more ideals contained in $2 \mathbb{Z}$ than the ideals $2^{k} \mathbb{Z}$.
Definition. In general, the ideal $\operatorname{sat}(J)=J_{P} \cap D$ is called the saturation of $J \subset P$ with respect to P and an ideal $J \subset P$ is saturated if $J=\operatorname{sat}(J)$.

The Proposition says that prime ideals are saturated.
Exercise. Check that $\operatorname{sat}(J)=\operatorname{sat}(\operatorname{sat}(J))$, so saturations of ideals are saturated!
Proof of Prop 3. We already know that $I \cap D \subset D$ is an ideal when $I \subset D_{P}$ is an ideal and it is prime when I is prime. Likewise, if $J \subset D$ is an ideal, then:

$$
J_{P}=\left\{\left.\frac{a}{s} \right\rvert\, a \in J, s \in S\right\} \subset D_{P}
$$

is closed under sums as well as products with elements r / s, so $J_{P} \subset D_{P}$ is an ideal. It is a little problematic to think of the ideal in this way, though, because of the equivalence of fractions, since it is possible to have $r / s \in J_{P}$ without having $r \in J$. Instead, we will use the alternative formulation:

$$
J_{P}=\left\{x \in D_{P} \mid x s \in J \text { for some } s \in S\right\}
$$

Now suppose $Q \subset P \subset D$ is prime, and $x y \in Q_{P}$ for some $x, y \in D_{P}$. Then: $x s_{1}, y s_{2} \in D$ and $x y s \in Q$ for some $s_{1}, s_{2}, s \notin P$ so $\left(x s_{1}\right)\left(y s_{2}\right) s \in Q$ and $x s_{1}$ or $y s_{2} \in Q$ so Q_{P} is prime. Moreover, primeness of Q implies that

$$
x \in D \text { and } x s \in Q \Rightarrow x \in Q
$$

from which it follows that $Q_{P} \cap D=Q$. The equality $Q_{P}=\left(Q_{P} \cap D\right)_{P}$ is easy.
Example. The localizations of polynomial rings:

$$
k\left[x_{1}, \ldots, x_{n}\right]_{\mathfrak{m}_{p}}=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in k\left[x_{1}, \ldots, x_{n}\right] \text { and } g(p) \neq 0\right\}
$$

at the maximal ideal kernels of $\mathrm{ev}_{p}: k\left[x_{1}, \ldots, x_{n}\right] \rightarrow k ; \mathrm{ev}_{p}(f)=f(p)$ are the rings of rational functions that are defined in a neighborhood of p.

Definition. A commutative ring R with 1 is a local ring if R has a unique maximal ideal \mathfrak{m} which (Zorn's Lemma) necessarily contains all other ideals $I \subset R$.
Remark. In a local ring R, every element of the complement \mathfrak{m}^{c} is a unit.
Aside from the fields, we've seen one local ring persistently in our examples:

$$
R=k[[x]] \text { with maximal ideal } \mathfrak{m}=\langle x\rangle
$$

but now we have a machine for producing local rings $\left(D_{P}, \mathfrak{m}\right)$ from any pair (D, P) consisting of a domain and a prime ideal.

We finish with an important class of rings (the next simplest after the fields).
Definition. A Noetherian domain D satisfying:
(i) D is a local ring with (non-zero) maximal ideal \mathfrak{m}.
(ii) $\mathfrak{m}=\langle\pi\rangle$ is principal
is called a discrete valuation ring (DVR).
Proposition 3. Every element $a \in D$ in a DVR is a product:

$$
u \pi^{r} \text { for a unique } r \text { and } u \in D^{*}
$$

Thus the only ideals in a DVR are the principal ideals $\mathfrak{m}^{r}=\left\langle\pi^{r}\right\rangle$ for $r \geq 1$.
Proof. Every irreducible element $a \in D$ is of the form:

$$
a=u \pi \text { for } u \in D^{*}
$$

since $a \in\langle\pi\rangle$ is divisible by π, which is not a unit (hence it is an associate of a). Thus the factorization of an arbitrary: $b=a_{1} \cdots a_{r}$ as a product of irreducibles is

$$
b=\left(u_{1} \pi\right) \cdots\left(u_{r} \pi\right)=u \pi^{r}
$$

and the uniqueness is clear by cancellation. For the rest of the proof, note that:

$$
\left\langle u_{1} \pi^{r_{1}}, \ldots ., u_{n} \pi^{r_{n}}\right\rangle=\left\langle u_{1} \pi^{r_{1}}\right\rangle \text { if } r_{1} \leq \cdots \leq r_{n}
$$

Thus in particular, a DVR is a local PID (and conversely).
Let D be a DVR and let $k(D)$ be the field of fractions. Then:

$$
k(D)=\left\{u \pi^{r} \mid u \in D^{*} \text { and } r \in \mathbb{Z}\right\}
$$

and the mapping:

$$
\nu: k(D)^{*} \rightarrow \mathbb{Z} ; \nu\left(u \pi^{r}\right)=r
$$

has the following properties:
(i) $\nu(a b)=\nu(a)+\nu(b)$
(ii) $\nu(a+b) \leq \min (a, b)$ with equality when $\nu(a) \neq \nu(b)$.
(iii) $D=\{a \in k(D) \mid \nu(a) \geq 0\}$ and $\mathfrak{m}=\{a \in k(D) \mid \nu(a) \geq 1\}$.

A mapping from a field to an ordered abelian group satisfying (i) and (ii) is a valuation, and when the ordered abelian group is \mathbb{Z}, then the mapping is a discrete valuation. Hence the name.
Definition. A domain D with the property that localization D_{P} at each non-zero prime ideal is a DVR is called a Dedekind domain.
Remark. In number theory, these are the rings of integers in a number field and in algebraic geometry, these are the (coordinate rings of) smooth affine curves.

