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Localization

Let D be an integral domain.

Definition. A subset S ⊂ D is multiplicative if:

0 ̸∈ S, 1 ∈ S and s, t ∈ S implies st ∈ S

Examples. (a) The abelian group D∗ of units in D is multiplicative.

(b) The set {1, f, f2, ....} of powers of f ̸= 0 is multiplicative.

(c) The complement of an ideal I ⊂ D is multiplicative if and only if I is prime.

Proposition 1. Given a multiplicative subset S ⊂ D, let:

S−1D =
{r

s
| r ∈ D, s ∈ S

}
/ ∼

where
r1
s1

∼ r2
s2

if and only if r1s2 − r2s1 = 0

and equip S−1D with fraction addition and multiplication:

r1
s1

+
r2
s2

=
r1s2 + r2s1

s1s2
and

r1
s1

· r2
s2

=
r1r2
s1s2

Then S−1D is an integral domain with 0 = 0
1 , 1 = 1

1 and injective homomorphism:

f : D → S−1D given by f(r) =
r

1

Proof. This mainly amounts to proving well-definedness.

(i) ∼ is an equivalence relation. Transitivity is the only non-obvious property:

r1s2 − r2s1 = 0, r2s3 − r3s2 = 0 ⇒

s2(r1s3 − r3s1) = s3(r1s2 − r2s1) + s1(r2s3 − r3s2) = 0

⇒ r1s3 − r3s1 = 0

(ii) Addition is determined by passing to common denominators:

r1
s1

+
r2
s2

=
r1s2
s1s2

+
r2s1
s1s2

as well as the distributive law and requirement that:

r

1
· 1
s
=

r

s

which also determines multiplication. But you should check this is well-defined.

(iii) S−1D is an integral domain, since:

r1r2
s1s2

=
0

1
if and only if r1r2 = 0 if and only if either r1 = 0 or r2 = 0

since D has no zero divisors.

Remarks. (a) If S ⊂ D∗, then f : D → S−1D is an isomorphism with

r

s
=

s−1r

1
1
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(b) If S = D − {0}, then S−1D is a field. This is the field of fractions k(D) of
the domain D. All other domains S−1D sit in between D and the field of fractions:

D ⊂ S−1D ⊂ k(D)

(c) If S = {1, f, ...}, then S−1D is denoted by Df , and:

q : D[x] → Df ; q(x) = 1/f is surjective with kernel I = ⟨1− fx⟩
so Df is a quotient ring of the polynomial ring.

(d) If S = P c for P ⊂ D, then S−1D is denoted by DP . This is usually not a
quotient ring of a polynomial ringD[x1, ..., xn] with any (finite) number of variables.
We’ll see this when we prove the Hilbert Nullstellensatz.

Concrete Example. Let D = Z. Then:

(a) k(Z) = Q, the field of rational numbers.

(b) Zn = Z[ 1n ] are the rational numbers whose denominators (in lowest terms)
divide some power of n. Note that:

Zn = Zp1···pr
= Z[

1

p1
, ....,

1

pr
]

where p1, ..., pr are the distinct prime factors of n.

(c) Z⟨p⟩ are the rational numbers whose denominators (in lowest terms) are not
divisible by p. Sometimes this is written Zp, which is confusing given (b). In fact,
there are a whole lot of rings that might be written as Zp, so context is everything!

Let D be a UFD. Then an element:
r

s
∈ k(D)

is in lowest terms if the prime factorizations of r and s contain no associated
common primes. This ratio is, moreover, unique up to multiplying numerator and
denominator by the same unit in D. A polynomial f(x) ∈ D[x] is in lowest terms if
the factorizations of the coefficients of f(x) contain no associated common primes.
Gauss’ Lemma relies on:

Proposition 2. If f(x), g(x) ∈ D[x] are in lowest terms, then so is f(x)g(x).

Proof. Let f(x) = adx
d+ ...+a0, g(x) = bex

e+ · · ·+ b0 and let p ∈ D be prime.
Then p does not divide all the a’s and it does not divide all the b’s, so:

p divides a0, ...., ak−1 but not ak and p divides b0, ..., bl−1 but not bl

for some k ≤ d and l ≤ e. Then p does not divide the coefficient:

· · ·+ ak+1bl−1 + akbl + ak−1bl+1 + · · ·
of xk+l in the product f(x)g(x). So the product is in lowest terms! □

Now we can prove:

Gauss’ Lemma. If D is a UFD, then D[x] is a UFD.

Proof. First of all, k(D)[x] is a Euclidean domain, so it is also a PID and UFD.
Now suppose f(x) ∈ D[x]. Since a prime in D is also a prime in D[x], we may
remove all the common prime factors of the coefficients of f(x) and write it as

p1 · · · pr · g(x) where g(x) ∈ D[x] is lowest terms
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We may factor the polynomial g(x) in the Euclidean domain k(D)[x] to get:

g(x) = h1(x) · · ·hs(x) where each hi(x) ∈ k(D)[x] is prime

There are now unique fractions (in lowest terms) so that the polynomials:

qi(x) =

(
ri
si

)
hi(x) ∈ D[x] are in lowest terms

and then it follows from the Proposition that both:

g(x) and q1(x) · · · qs(x) =
(∏ ri

si

)
g(x) =

(r
s

)
g(x) ∈ D[x] are in lowest terms

It follows that r and s (chosen to have no common prime factors) have no prime
factors at all! So u = r/s ∈ D∗ and:

f(x) = u−1p1 · · · pr · q1(x) · · · qs(x)
is the desired factorization into primes. □

Example. In Q[x], we have:

x2 − 1 =

(
2

3
x− 2

3

)(
3

2
x+

3

2

)
which we can put into (slightly inefficient, to play devil’s advocate) lowest terms:

−3

2

(
2

3
x− 2

3

)
= −x+ 1 and

2

3

(
3

2
x+

3

2

)
= x+ 1

and then
x2 − 1 = (−1)(−x+ 1)(x− 1) with the unit u = −1

Eisenstein’s Criterion. If D is a UFD, f(x) ∈ D[x], p ∈ D is a prime and:

(a) p divides all the coefficients of f(x) except the leading coefficient.

(b) p2 does not divide the constant term of f(x).

Then f(x) is irreducible as a polynomial in k(D)[x].

Proof. By Gauss’ lemma, if f(x) is reducible in k(D)[x], then it factors:

f(x) = g(h)h(x) by polynomials of smaller degree in D[x]

Let pD ⊂ D be the ideal generated by p and note that pD[x] ⊂ D[x] is also a
prime ideal, since:

D[x]/pD[x] = (D/p) [x]

By (a) above, if we let f(x) = f(x) + pD[x], then we have:

adx
d = f(x) = g(x) · h(x) ∈ (D/p) [x]

from which it follows that:

g(x) = bxd and h(x) = cxd−e for some e < d and b, c ∈ D/pD

But then p divides the constant terms of g(x) and h(x), which violates (b). □

Example. The polynomials:

xa−1 + xa−2 + · · ·+ 1 =
xa − 1

x− 1
∈ Q[x]

are irreducible if and only if a is a prime number. If a = bc, then xb − 1 | xa − 1.
If a = p is prime, apply Eisenstein to (x+ 1)p − 1 using the binomial theorem.
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Next, let P ⊂ D be a prime ideal in an integral domain and let:

D ⊂ DP = S−1D be the inclusion of domains in Proposition 1

Proposition 3. (a) There is a unique maximal ideal mP ⊂ DP .

(b) There are maps between the set of ideals in DP and the set of ideals in P :

{ideals JP ⊂ DP } ↔ {ideals J ⊂ P ⊂ D}

JP 7→ D ∩ JP = {a ∈ D | a
1
∈ JP }; J 7→ JP := {a

s
| a ∈ J, s ̸∈ P}/ ∼

that satisfy:
J ⊂ (JP ∩D) and (JP ∩D)P = JP

Moreover, if Q ⊂ D is a prime ideal, then QP ⊂ DP is also prime and Q = (QP∩D).
Thus there is a bijection:

{prime ideals QP ⊂ DP } ↔ { prime ideals Q ⊂ P ⊂ D}
and in particular, mP maps to P under the bijection.

Example. Consider the prime ideal P = 2Z. Then ZP has only the ideals:

{0} and mk =
{a

s
| 2k divides a and s is odd

}
but there are lots more ideals contained in 2Z than the ideals 2kZ.
Definition. In general, the ideal sat(J) = JP ∩D is called the saturation of J ⊂ P
with respect to P and an ideal J ⊂ P is saturated if J = sat(J).

The Proposition says that prime ideals are saturated.

Exercise. Check that sat(J) = sat(sat(J)), so saturations of ideals are saturated!

Proof of Prop 3. We already know that I ∩D ⊂ D is an ideal when I ⊂ DP

is an ideal and it is prime when I is prime. Likewise, if J ⊂ D is an ideal, then:

JP =
{a

s
| a ∈ J, s ∈ S

}
⊂ DP

is closed under sums as well as products with elements r/s, so JP ⊂ DP is an ideal.
It is a little problematic to think of the ideal in this way, though, because of the
equivalence of fractions, since it is possible to have r/s ∈ JP without having r ∈ J .
Instead, we will use the alternative formulation:

JP = {x ∈ DP | xs ∈ J for some s ∈ S}

Now suppose Q ⊂ P ⊂ D is prime, and xy ∈ QP for some x, y ∈ DP . Then:

xs1, ys2 ∈ D and xys ∈ Q for some s1, s2, s ̸∈ P so (xs1)(ys2)s ∈ Q and xs1 or ys2 ∈ Q

so QP is prime. Moreover, primeness of Q implies that

x ∈ D and xs ∈ Q ⇒ x ∈ Q

from which it follows that QP ∩D = Q. The equality QP = (QP ∩D)P is easy. □

Example. The localizations of polynomial rings:

k[x1, ..., xn]mp
=

{
f

g
| f, g ∈ k[x1, ..., xn] and g(p) ̸= 0

}
at the maximal ideal kernels of evp : k[x1, ..., xn] → k; evp(f) = f(p) are the rings
of rational functions that are defined in a neighborhood of p.
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Definition. A commutative ring R with 1 is a local ring if R has a unique maximal
ideal m which (Zorn’s Lemma) necessarily contains all other ideals I ⊂ R.

Remark. In a local ring R, every element of the complement mc is a unit.

Aside from the fields, we’ve seen one local ring persistently in our examples:

R = k[[x]] with maximal ideal m = ⟨x⟩
but now we have a machine for producing local rings (DP ,m) from any pair (D,P )
consisting of a domain and a prime ideal.

We finish with an important class of rings (the next simplest after the fields).

Definition. A Noetherian domain D satisfying:

(i) D is a local ring with (non-zero) maximal ideal m.

(ii) m = ⟨π⟩ is principal
is called a discrete valuation ring (DVR).

Proposition 3. Every element a ∈ D in a DVR is a product:

uπr for a unique r and u ∈ D∗

Thus the only ideals in a DVR are the principal ideals mr = ⟨πr⟩ for r ≥ 1.

Proof. Every irreducible element a ∈ D is of the form:

a = uπ for u ∈ D∗

since a ∈ ⟨π⟩ is divisible by π, which is not a unit (hence it is an associate of a).
Thus the factorization of an arbitrary: b = a1 · · · ar as a product of irreducibles is

b = (u1π) · · · (urπ) = uπr

and the uniqueness is clear by cancellation. For the rest of the proof, note that:

⟨u1π
r1 , ....., unπ

rn⟩ = ⟨u1π
r1⟩ if r1 ≤ · · · ≤ rn □

Thus in particular, a DVR is a local PID (and conversely).

Let D be a DVR and let k(D) be the field of fractions. Then:

k(D) = {uπr | u ∈ D∗ and r ∈ Z}
and the mapping:

ν : k(D)∗ → Z; ν(uπr) = r

has the following properties:

(i) ν(ab) = ν(a) + ν(b)

(ii) ν(a+ b) ≤ min(a, b) with equality when ν(a) ̸= ν(b).

(iii) D = {a ∈ k(D) | ν(a) ≥ 0} and m = {a ∈ k(D) | ν(a) ≥ 1}.
A mapping from a field to an ordered abelian group satisfying (i) and (ii) is a

valuation, and when the ordered abelian group is Z, then the mapping is a discrete
valuation. Hence the name.

Definition. A domain D with the property that localization DP at each non-zero
prime ideal is a DVR is called a Dedekind domain.

Remark. In number theory, these are the rings of integers in a number field and in
algebraic geometry, these are the (coordinate rings of) smooth affine curves.


