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Homology and Homotopy and Functors (Oh My!)

Now we turn to chain complexes that are (usually) not exact.

Proposition 1. A morphism f of chain complexes:

· · · → Ci+1 → Ci → Ci−1 → · · ·
fi+1 ↓ fi ↓ fi−1 ↓

· · · → C ′
i+1 → C ′

i → C ′
i−1 → · · ·

induces morphisms of homologies: Hi(f) : Hi(C•)→ Hi(C
′
•).

Proof. Since the diagram commutes, we obtain:

fi(ker(di)) ⊂ ker(d′i) and fi(im(di+1)) ⊂ im(d′i+1) rendering

Hi(f)(ci + im(di+1)) := fi(ci) + im(d′i+1)

a well-defined R-module homomorphism of homology modules. □

Different morphisms of chain complexes may induce the same maps on homology
(e.g. any morphism to or from an exact complex induces the zero map). Also:

Definition. (a) A chain homotopy h between f, g ∈ Hom(C•, C
′
•) is a set of maps:

hi : Ci → C ′
i+1 raising the index by one!

with the property that (fi − gi)(ci) = (d′i+1 ◦ hi − hi−1 ◦ di)(ci).
(b) We say f ∼ g if there is a chain homotopy between f and g.

Example. Let M and N be R-modules. Given a self-map of complexes:

0 → M
i→ M ⊕N q→ N → 0

↓ 0 ↓ g ↓ 0
0 → M

i→ M ⊕N q→ N → 0

then the morphism g is not required to be the zero map. Instead, we have:

g(m,n) = (f(n), 0) for some morphism f : N →M

On the other hand, each of these maps of complexes is homotopic to zero via:

h(m,n) = f(n) :M ⊕N →M and 0 : N →M ⊕N
Singular Homology (a pop-up ad). Let X be a topological space.

∆n = {(x0, ..., xn) | x0 + · · ·+ xn = 1} ⊂ Rn+1

is the n-simplex (a manifold with boundary), and

Cn(X) =
∑

ki{fi : ∆n → X}

is the free abelian group on the continuous maps f : ∆n → X. with boundary:

∂n(f) = f |boundary of ∆n

(with appropriate signs so that ∂n−1 ◦ ∂n = 0). The homology of the complex
(C•(X), ∂•) is the singular homology Hi(X,Z), and a continuous map f : X → Y
induces a chain map f : C•(X) → C•(Y ) by composition, and therefore a map on
singular homology groups. Homotopic continuous maps f ∼ g : X → Y induce the
same map on singular homology because they are used to create a chain homotopy
between the chain maps! (Hence the name).
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Remarks. (i) Chain homotopy is an equivalence relation on chain maps.

(ii) The chain maps that are homotopic to the zero map are a sub R-module:

Zero(C•, C
′
•) ⊂ Hom(C•, C

′
•)

Proposition 2. If f ∼ 0, then f induces the zero map on all homology R-modules.

Proof. Let h be the chain homotopy satisfying the definition. Then

fi(ci) = d′i+1(hi(ci))− hi−1(di(ci)) = d′i+1(hi(ci)) ∈ im(d′i+1)

for all elements ci ∈ ker(di). □

Proposition 3. If f : C• → C ′
• or g : C ′

• → C ′′
• is homotopic to zero, then g◦f ∼ 0.

Proof. If h is the homotopy for f , then g ◦ h is the homotopy for g ◦ f , etc. □

Remark. It is tempting to declare homotopic maps to be equal and replace:

Hom(C•, C
′
•) with Hom(C•, C

′
•)/Zero(C•, C

′
•)

This defines a “homotopy category” of chain complexes (by Proposition 3), in
which the Hom spaces are the quotient modules. Zero complexes are still the zero
objects and direct sums are still the products and coproducts. Isomorphisms are
a bit different, though, since f and g are two-sided inverses (with C ′′

• = C•) in
the homotopy category if and only if g ◦ f ∼ 1C• and f ◦ g ∼ 1C′

•
. However, in

the homotopy category there are no kernels and cokernels with universal properties
(in general), so the homotopy category is not an abelian category. It is instead
a triangulated category, with a “mapping cone” playing the role of an intertwined
kernel and cokernel.

The next lemma is a close relative of the snake lemma. It connects the homology
objects of complexes in a short exact sequence (as objects of ChA) via a long exact
sequence (of objects of A).

The Zigzag Lemma. Let 0→ C ′
•

f→ C•
g→ C ′′

• → 0 be a short exact sequence of
complexes of R-modules. Then there are connecting “snake” morphisms:

δi : Hi(C
′′
• )→ Hi−1(C•)

in a long exact sequence of homology modules:

(∗) δi+1→ Hi(C•)
Hi(f)→ Hi(C

′
•)

Hi(g)→ Hi(C
′′
• )

δi→

Proof. Consider the diagram (with the complexes running vertically):

↓ ↓ ↓
0 → Ci+1 → C ′

i+1 → C ′′
i+1 → 0

↓ ↓ ↓
0 → Ci

fi→ C ′
i

gi→ C ′′
i → 0

↓ di ↓ d′i ↓ d′′i
0 → Ci−1 → C ′

i−1 → C ′′
i−1 → 0

↓ ↓ ↓

Via the snake lemma, we get snake maps: δ : ker(d′′i )→ coker(di) = Ci−1/im(di)
which we want to convert into maps on homology modules:

δi : ker(d′′i )/im(d′′i+1)→ ker(di−1)/im(di)
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To do this, we need to show that δi is well-defined, i.e. that:

δ(ker(d′′i )) ⊂ ker(di−1) and δ(im(d′′i+1)) ⊂ im(di)

and then we need to show that the sequence (∗) is exact at each of:

Hi(C•), Hi(C
′
•) and Hi(C

′′
• )

Happy diagram chasing :-)

Remark. There is much more one can do along these lines. For example, one can
ask, given a long exact sequence of complexes, whether there is a relationship among
the homologies (there is). Or, in a more symmetric vein, one could consider a chain
complex of chain complexes (a double complex) and ask for relations between the
batch of homologies in one direction and those in the other direction. This is what
spectral sequences are designed to do.

Functors. On the one hand, functors are the morphisms in a category whose
objects are categories! On the other hand, one can ask whether a functor between
abelian categories preserves exact sequences (in which case it is an exact functor).
Of particular interest are functors that are nearly exact, converting short exact
sequences to short left (or right) exact sequences.

Definition. (a) A functor F : F → G between categories is:

• A mapping of objects F (X) = Y , and

• A mapping of morphisms F (f : X → Y ) = F (f) : F (X)→ F (Y )

with the property that F (1X) = 1F (X) and

F (f ◦ g) = F (f) ◦ F (g) for all composable morphisms

(b) A contravariant functor F : F → G is a functor from Fopp to G, i.e. it is a
functor with the property that the mapping on morphisms “reverses arrows.”

Some Fundamental Examples.

(a) Forgetful functors (from more structure to less). E.g.

FAb,Set : Ab→ Set
from the category of abelian groups to sets, taking:

F (A,+) = A as a set, and F (f : A→ B) = f : F (A)→ F (B)

since every abelian group is a set and every homomorphism is a set mapping.
Note that there are more set mappings between two abelian groups than there are
group homomorphisms, but if two group homomorphisms are the same, then the
set mappings are the same. On the other hand, the “forgetful” functor:

FAb,Gr : Ab→ Gr
from the category of abelian groups to arbitrary groups does not map onto all
objects (since there are non-commutative groups), but:

(∗) FAb,Gr : HomAb(A,B)→ HomGr(A,B)

is a bijection for all abelian groups A and B. That is, the homorphisms between
abelian groups are the same whether they are regarded as abelian groups or just as
groups. A functor that is an injection on all Homs (like FAb,Set) is faithful and a
functor that is a bijection on all Homs (like FAb,Gr) is fully faithful.



4

(b) Each object A of an abelian category A determines two functors:

FA : A → Ab and FA : Aopp → Ab
defined as follows.

FA(B) = Hom(A,B) and FA(f : B → C) = f∗ : Hom(A,B)→ Hom(A,C) and

FA(B) = Hom(B,A) and FA(f : C → B) = f∗ : Hom(B,A)→ Hom(C,A)

where f∗(ϕ) = f ◦ ϕ and f∗(ϕ) = ϕ ◦ f
To check the first: FA(1B)(ϕ) = (1B)∗(ϕ) = 1B ◦ ϕ = ϕ is the identity, and

(g ◦ f)∗(ϕ) = (g ◦ f) ◦ ϕ = g ◦ (f ◦ ϕ) = (g∗ ◦ f∗)(ϕ). Now you check the second.

(c) Another Topology Popup Ad. Let T op0 be the category of pointed topological
spaces (X, p), with morphisms f : (X, p)→ (Y, q) consisting of continuous maps:

f : X → Y with f(p) = q

Then the fundamental group is the functor to the category of groups:

π1 : T op0 → Gr
where π1(X, p) is the group of (homotopy equivalence classes of) continuous loops
based at p and loop concatenation is the (non-commutative) group operation. The
continuous maps f : (X, p)→ (Y, q) go to homomorphisms f∗ : π1(X, p)→ π1(Y, q)
and if f ∼ g are homotopic maps, then f∗ = g∗, so this is not a faithful functor!

Proposition 4. Let

0→ B
f→ B′ g→ B′′ → 0

be a short exact sequence in an abelian category A, i.e. f is a monomorphism and
is the kernel of g, and g is an epimorphism and is the cokernel of f .

Then the following sequences of abelian groups are both (left!) exact.

(i) 0→ FA(B)
f∗→ FA(B

′)
g∗→ FA(B

′′) and (ii) FA(B)
f∗

← FA(B′)
g∗

← FA(B′′)← 0

Proof (of (i), with (ii) done analogously) Consider the diagram:

A
↓ ϕ ↘ ψ

0 → B
f−→ C

g−→ D → 0

By definition, f is a monomorphism if and only if f∗(ϕ1) = f∗(ϕ2) implies ϕ1 = ϕ2
i.e. f∗ is an injective map of abelian groups, and if g∗(ψ) = 0, then ψ factors as
ψ = f ◦ ϕ = f∗(ϕ) for some ϕ : A→ B since f is the kernel of g. □

Definition. A short exact sequence of objects of an abelian category A:

0→ B
f→ B′ g→ B′′ → 0

is split by any morphism h : B′′ → B′ such that g ◦ h = 1B′′ and one then obtains:

(f, h) : B ⊕B′′ → B′, an isomorphism with the (co)product

Example. In the category of R-modules, every short exact sequence:

0→M
f→ N

g→ Rn → 0

culminating in a free R-module splits by sending each generator ei ∈ Rn to any ni
such that g(ni) = ei.
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Proposition 5. An exact sequence 0→ B
f→ B′ g→ B′′ → 0 splits if and only if:

FA(g) = g∗ : Hom(A,B′)→ Hom(A,B′′)

is surjective for all A.

Proof. Suppose g∗ is surjective for A = B′′. Choose h ∈ Hom(B′′, B′) so that:

g∗(h) = 1B′′ ∈ Hom(B′′, B′′)

Then by definition, h splits the sequence! On the other hand, if h : B′′ → B′ splits
the sequence, then for any object A, we have g∗h∗(ψ) = ψ for all ψ ∈ Hom(A,B′′)
and so g∗ is surjective. □

Instead of focusing on the sequence, we can instead focus on the object A.

Definition. An object P of A is projective if g∗ : Hom(P,B′)→ Hom(P,B′′) is
surjective whenever g : B′ → B′′ is surjective.

Proposition 6. The direct summands of free modules are the projectives inModR.

Proof. If P is a projective R-module, let g : F → P be a surjective morphism
from a free module (which always exists) with kernel module K and exact sequence:

0→ K → F → P → 0

Then as in the proof of Proposition 5, we may consider the surjection:

g∗ : Hom(P, F )→ Hom(P, P )

and choose h ∈ Hom(P, F ) with the property that g∗(h) = 1P . Then h splits the
sequence, and one obtains the isomorphism (f, h) : K ⊕ P ∼= F .

Conversely, let F be a free R-module and g : B′ → B′′ a surjection. Then any
ψ : F → B′′ lifts to ϕ : F → B′ by letting {eλ} freely generate F and choosing(!)
b′λ = ϕ(eλ) so that g(b′λ) = ψ(eλ). This shows that free modules are projective.
Now if P is a summand of F , let:

h : P → F and q : F → P be the inclusion and projection, with q ◦ h = 1P

Given ψ : P → B′′, we let ϕ : F → B′ lift the map ψ ◦ q : F → B′′, then
((g ◦ ϕ) ◦ h)(p) = ((ψ ◦ q) ◦ h)(p) = ψ(p) and so ϕ ◦ h lifts ψ. □

Corollary. An R-module with torsion is never projective.

Meanwhile, in Opposite Land....

Definition. A short exact sequence 0 → B
f→ B′ g→ B′′ → 0 is left split by any

morphism e : B′ → B with the property that f ◦ e = 1B , from which one obtains
an isomorphism (e, g) : B′ → B ⊕B′′ with the product.

The proofs of the following two Propositions are left as exercises.

Proposition 7. A short exact sequence is left split if and only if it is split.

Proposition 8. A sequence

0→ B → B′ → B′′ → 0

(left) splits if and only if each FA(f) = f∗ is surjective.

Definition. An object I of A is injective if FA(f) is surjective when f is injective.
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Given the similarities between FA and FA, the following may be a surprise.

Proposition 9. If R is a domain but not a field, then R is not injective inModR.

Proof. Let a ∈ R and let a : R → R be multiplication by a. Then recall that
multiplciation by a is injective if and only if a is not a zero-divisor. For the map:

FR(a) = a∗ : Hom(R,R)→ Hom(R,R)

we see that 1R = a∗(b) if and only if ab = 1, i.e. if and only if a is a unit.

Thus, if a is not a zero-divisor or a unit, then R is not an injective R-module. □

Remark. Of course R, being free, is a projective inModR.

Proposition 10. The injectives in the category Ab are the divisible groups, i.e.
those abelian groups A with the property that nx = a has a solution in A whenever
a ∈ A and n ∈ Z.

Proof. Suppose first that nx = a has no solution. Then n ̸= 0, and:

n : Z→ Z
exhibits the non-injectivity of A, with a ̸∈ n∗(Hom(Z, A)).

On the other hand, suppose A is divisible and consider B ⊂ B′ and ϕ : B → A.
Then consider the chains (C, ϕC) of intermediary subgroups B ⊆ C ⊆ B′ equipped
with morphisms ϕC : C → A such that ϕC |B = ϕ. Note that a chain is defined by
the condition (C, ϕC) ⊂ (C ′, ϕC′) if and only if C ⊂ C ′ and ϕC′ |C = ϕC .

Each such chain clearly has an upper bound, so by Zorn’s lemma, there is a
maximal element (C, ϕC). Now suppose that b′ ∈ B′−C. Then either nb′ = x ∈ C
for some n, in which case sending b′+c to 1

nϕC(x)+ϕC(c) ∈ A extends the map ϕC
to the larger subgroup generated by C and b′, or else nb′ ̸∈ C for all n, in which case
ϕC may be extended by sending b′ to an arbitrary a ∈ A. In either case, (C, ϕC) is
not a maximal element unless C = B′, proving the result with Zorn’s lemma. □

Examples. The rationals Q (with +) and the groups:

Z/p∞Z = {ζ ∈ C | ζp
n

= 1 for some n}
are divisible groups (for all primes p).

Corollary. Every (finitely generated) abelian group is a subgroup of an injective.

Note, however, that an injective (non-zero) abelian group is never finitely generated!


