HW \#4 - MATH 6310

FALL 2022

DUE: FRIDAY, OCTOBER 21

1. (a) If R is a UFD and $a, b \in R$ share no common prime factor, show that:

$$
f: R /\langle a\rangle \oplus R /\langle b\rangle \rightarrow R /\langle a b\rangle ; f(x+a R, y+b R)=b x+a y+a b R
$$

is an injective ring homomorphism.
(b) Find an example of (a) in which f is not surjective.
2. Let $S \subset R$ is a multiplicative subset of a commutative ring with 1 ,
(a) Given an R-module homomorphism $f: M \rightarrow N$, define the $S^{-1} R$ module homomorphism $S^{-1} f: S^{-1} M \rightarrow S^{-1} N$ in the only sensible way.
(b) If f is surjective, show that $S^{-1} f$ is also surjective.
(c) If $M \subset N$, show that $S^{-1} N / S^{-1} M \cong S^{-1}(N / M)$.
3. Find the invariant factor and primary decompositions of:

$$
\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 9 \mathbb{Z} \oplus \mathbb{Z} / 12 \mathbb{Z} \oplus \mathbb{Z} / 18 \mathbb{Z}
$$

4. Let $R=\mathbb{Q}[x]$ and consider the submodule $M \subset R^{2}$ generated by the elements ($x^{2}-1, x-1$) and $\left(x^{2}+x, x\right)$. Write M as a sum of cyclic modules.
5. Suppose $R=\mathbb{F}_{3}[x]$. Let M be the R-module generated by $a, b, c \in M$ subject to the three relations:

- $-x a+x^{2} b+\left(x^{2}-1\right) c=0$
- $x b+x c=0$ and
- $x b+x^{2} c=0$.

Find the invariant factor and primary decompositions of M.
6. Put the following matrix in rational canonical and Jordan normal forms.
$\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
7. (a) Prove that $A: k^{n} \rightarrow k^{n}$ is diagonalizable (with diagonal entries in k) if and only if the minimal polynomial of A has n distinct roots in k.
(b) If some power of $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is I_{n}, show that A is diagonalizable.
8. Find all the matrices $A: k^{4} \rightarrow k^{4}$ (up to similarity) with $A^{5}=0$.

Do any of them satisfy $A^{4} \neq 0$?

