HW #4 - MATH 6310 FALL 2022

DUE: FRIDAY, OCTOBER 21

1. (a) If R is a UFD and $a, b \in R$ share no common prime factor, show that: $f: R/\langle a \rangle \oplus R/\langle b \rangle \rightarrow R/\langle ab \rangle; \ f(x + aR, y + bR) = bx + ay + abR$ is an injective ring homomorphism.

(b) Find an example of (a) in which f is not surjective.

2. Let $S \subset R$ is a multiplicative subset of a commutative ring with 1,

(a) Given an *R*-module homomorphism $f: M \to N$, define the $S^{-1}R$ -module homomorphism $S^{-1}f: S^{-1}M \to S^{-1}N$ in the only sensible way.

(b) If f is surjective, show that $S^{-1}f$ is also surjective.

(c) If $M \subset N$, show that $S^{-1}N/S^{-1}M \cong S^{-1}(N/M)$.

3. Find the invariant factor and primary decompositions of: $\mathbb{Z}/4\mathbb{Z}\oplus\mathbb{Z}/9\mathbb{Z}\oplus\mathbb{Z}/12\mathbb{Z}\oplus\mathbb{Z}/18\mathbb{Z}$ **4.** Let $R = \mathbb{Q}[x]$ and consider the submodule $M \subset R^2$ generated by the elements $(x^2-1, x-1)$ and (x^2+x, x) . Write M as a sum of cyclic modules.

5. Suppose $R = \mathbb{F}_3[x]$. Let M be the R-module generated by $a, b, c \in M$ subject to the three relations:

- $-xa + x^2b + (x^2 1)c = 0$
- xb + xc = 0 and
- $xb + x^2c = 0.$

Find the invariant factor and primary decompositions of M.

6. Put the following matrix in rational canonical and Jordan normal forms.

$$\left[\begin{array}{rrrr} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right]$$

7. (a) Prove that $A: k^n \to k^n$ is diagonalizable (with diagonal entries in k) if and only if the minimal polynomial of A has n distinct roots in k.

(b) If some power of $A : \mathbb{C}^n \to \mathbb{C}^n$ is I_n , show that A is diagonalizable.

- 8. Find all the matrices $A: k^4 \to k^4$ (up to similarity) with $A^5 = 0$. Do any of them satisfy $A^4 \neq 0$?
- 8