HW \#3 - MATH 6310

FALL 2022

DUE: FRIDAY, OCTOBER 7

Modified from exercises in Aluffi.
Let R be a commutative ring with 1 .

1. Show that if the free R-modules R^{m} and R^{n} are isomorphic, then $m=n$. Thus the rank of a free module is well-defined.
2. Prove the second isomorphism theorem for R-modules:
(a) If S, T are submodules of an R-module M, show that both $S \cap T$ and

$$
S+T=\{s+t \mid s \in S, t \in T\} \subset M
$$

are submodules of M.
(b) Again, given S, T submodules of M, find an isomorphism:

$$
f: \frac{S+T}{T} \rightarrow \frac{S}{S \cap T}
$$

3. Prove the third isomorphism theorem. Given submodules

$$
S \subset T \subset M
$$

find an isomorphism:

$$
f: \frac{(M / S)}{(T / S)} \rightarrow \frac{M}{T}
$$

4. A nonzero R-module M is simple if its only submodules are $\{0\}$ and M.
(a) Find all the simple (finitely generated) \mathbb{Z}-modules.
(b) If k is a field, find all the simple $k[x]$-modules.
(c) If M and N are simple, prove that every R-module homomorphism $f: M \rightarrow N$ is 0 or else an isomorphism (this is Schur's Lemma for modules).
5. An R-module M is said to have finite length if there are submodules:

$$
0=M_{0} \subset M_{1} \subset \cdots \subset M_{n}=M
$$

with the property that each M_{i+1} / M_{i} is simple. Such a series of submodules is called a composition series for M.
(a) Prove that \mathbb{Z} does not have finite length as a \mathbb{Z}-module but that each $\mathbb{Z} / d \mathbb{Z}$ does have finite length.
(b) Consider the $k[x]$-module $M=k[x] /\left\langle x^{2}\right\rangle$.

Show that M has a composition series $0=M_{0} \subset M_{1} \subset M_{2}=M$ with

$$
M_{1}=k[x] /\langle x\rangle \text { and } M_{2} / M_{1}=k[x] /\langle x\rangle
$$

but that M_{2} is not isomorphic to $k[x] /\langle x\rangle \oplus k[x] /\langle x\rangle$.
6. (Challenging!) Prove that any two composition series for the same module M have the same length and have the the same simple "Jordan-Hölder" factors M_{i+1} / M_{i} (counted with multiplicity).
7. Suppose M is the cokernel of:

$$
f: k[x]^{2} \rightarrow k[x]^{2} \text { given by } f=\left[\begin{array}{cc}
x^{2}-1 & 0 \\
0 & (x-1)^{2}
\end{array}\right]
$$

(a) Find M in the format of the Structure Theorem.

Hint: Your answer depends upon the characteristic of the field k !

