HW #2 - MATH 6310 FALL 2022

DUE: FRIDAY, SEPTEMBER 9

Modified from exercises in Aluffi.

- Prove the 2nd Iso Theorem. Let R be a commutative ring with 1.
 If S ⊂ R is a subring and I ⊂ R is an ideal then
 (a) S + I ⊂ R is a subring and I ⊂ S + I and S ∩ I ⊂ S are ideals and
 - (b) $S/(S \cap I)$ is isomorphic to (S + I)/I.

2. Let R be a domain. Prove that R[x] and R[[x]] are domains.

3. If $I, J \subset R$ are ideals in a commutative ring, let:

$$IJ = \{\sum_{i,j} s_i t_j \mid s_i \in I \text{ and } t_j \in J\}$$

be the finite sums of products of elements of I with elements of J.

(a) Prove that IJ is an ideal, and that $IJ \subset I \cap J$.

(b) Find an example where $IJ \neq I \cap J$.

4

4. In the context of Problem 3, prove that if I + J = R, then $IJ = I \cap J$.

(b) Find all the maximal ideals in $\mathbb{R}[x]$.

(c) Find polynomials f(x) of every degree in $\mathbb{Q}[x]$ such that $\langle f(x) \rangle \subset \mathbb{Q}[x]$ is a maximal ideal.