HW \#1 - MATH 6310

FALL 2022

DUE: FRIDAY, SEPTEMBER 2

Modified from exercises in Aluffi, Chapter III.

1. Let R be a commutative ring with 1 . An element $x \in R$ is called nilpotent if $r^{n}=0$ for some $n>0$.
(a) Prove that the set of nilpotent elements of R is an ideal. This is the nilradical N of R.
(b) Show that R / N has no nonzero nilpotent elements. Rings with no nonzero nilpotents are called reduced.
2. (a) Prove that $x= \pm 1$ are the only solutions to $x^{2}=1$ in a field.
(b) Find a commutative ring where $x^{2}=1$ has more solutions.
3. Find all the commutative rings with 0,1 and exactly two other elements. Be explicit! Are there any non-commutative rings with four elements?
4. Let R be a commutative ring and consider the power series ring $R[[x]]$. Prove that $a_{0}+a_{1} x+a_{2} x^{2}+\ldots$ has a multiplicative inverse if and only if a_{0} has a multiplicative inverse in R.
5. The center of a (non-commutative) ring R consists of all elements a such that $a r=r a$ for all $r \in R$. Prove that the center is a subring of R and that the center of a division ring is a field. What is the center of the division ring of quaternions?
6. Let R be a ring containing \mathbb{C} as a subring. Prove that there is no ring homomorphism $R \rightarrow \mathbb{R}$.
