
Riemann Surfaces in the Wild

We will prove the Riemann Roch Theorem for Riemann Surfaces that
are embedded in projective space. That is, we will assume that the Riemann
Surface is embedded by meromorphic functions as a subset S ⊂ CPn, for
which the homogeneous ideal:

I =
∞⊕
d=0

Id

Id = {F ∈ C[x0, ..., xn]d | F (p) = 0 for all p = (p0 : ... : pn) ∈ S}

carves out S in the sense of Lemma 3.6. We will also assume that S ⊂ CPn
is not contained in any hyperplane, i.e. that I0 = I1 = 0.

The homogeneous coordinate ring of S ⊂ CPn:

C[S] := C[x0, ..., xn]/I =
∞⊕
d=0

C[S]d

is the quotient ring, which is graded (since I is a homogeneous ideal), and:

hS(d) = dim (C[S]d)

is the Hilbert function of S. Note that hS(0) = 1 and hS(1) = n+ 1.

Example. Suppose S ⊂ CP2 is embedded in the complex projective plane.
In this case the homogeneous ideal is I = F · C[x0, x1, x2], generated by a
single homogeneous polynomial F ∈ C[x0, x1, x2]δ of degree δ and then:

hCP2(d) = dim(C[x0, x1, x2]d) =

(
d+ 2

2

)
and

hI(d) = dim Id = dim (C[x0, x1, x2]d−δ) =

(
d− δ + 2

2

)
(the latter formula is only valid when d ≥ δ). Subtracting, we get:

hS(d) = δd+

(
1− (δ − 1)(δ − 2)

2

)
, valid for all d ≥ δ

a linear function of d (for all d ≥ δ).
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Let l = c0x0 + · · · + cnxn ∈ C[x0, ..., xn]1 be a linear form. Then we
define an effective divisor div(l) on the Riemann surface locally as follows.
If p = (p0 : ... : pn) ∈ S and pi 6= 0, then:

l

xi
= c0

x0
xi

+ · · ·+ cn
xn
xi

defines a meromorphic function on S, and we define ordp(l) := ordp(l/xi)
which is independent of the choice of pi 6= 0 above. Then

div(l) :=
∑
p

ordp(l) · p is an effective divisor

(this is basically the same way that div was computed for differential forms,
and we’ll eventually see that both generalize to the notion of div(s) for
sections s of a holomorphic line bundle on S).

Some things to notice about ordp(l) and div(l):

(a) S ⊂ CPn meets the hyperplane H = V (l) ⊂ CPn at p if ordp(l) > 0
and it is tangent to H at p if ordp(l) > 1.

(b) If S and H are transverse, i.e. there are no points of tangency, then
deg(div(l)) is the number of intersection points (and it is always possible to
find transverse hyperplanes to an embedded Riemann surface).

If l and l′ are two linear forms, then:

deg(div(l))− deg(div(l′)) = deg(div(l/l′)) = 0

since l/l′ defines a meromorphic function on S. Thus, deg(div(l)) = δ is
independent of the linear form. This is the degree of the embedding of S.

Our aim is to prove the Riemann Roch equality first for divisors

E = d · div(l)

for sufficiently large values of d. To that end, we’ll show that:

(A) The Hilbert function of S is linear for large values of d, and in fact:

hS(d) = δ · d+ (1− g) for large values of d

where δ is the degree of the embedded S and g is the genus, which means
that the constant term of hS(d) is independent of the embedding of S.
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Note. It then will follow from the Example above that:

g(S) =
(δ − 1)(δ − 2)

2
for embedded plane curves S of degree δ

(B) When d is sufficiently large, there is an isomorphism:

P(C[S]d)→ |E|; G (mod Id) 7→ div(G)

of projective spaces, where div(G) is defined for homogeneous polynomials
of degree d not in Id exactly as div(l) was defined.

Then by (B), hS(d) = dim(V (E)) and V (KS − E) = 0 for E as above,
and then (A) is precisely the Riemann Roch Theorem for E.

Assignment 2. (i) Check the computation of hS(d) in the Example.

(ii) Convince yourself that the degree of a Riemann surface embedded in
the plane actually does agree with the degree of the homogeneous polyno-
mial F that generates its homogeneous ideal. (This is a consequence of the
computation in the Example and (A)).

(iii) Suppose S ⊂ CP3 and its homogeneous ideal I is generated by
two homogeneous polynomials F and G, of degrees γ1 and γ2, respectively.
Compute the degree δ and the genus g of S in terms of γ1 and γ2.
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