
Riemann Surfaces and Graphs
6. The Riemann Roch Theorem

The Riemann-Roch Theorem is a relation between two vector spaces
associated to a divisor D of degree d on a Riemann surface S. Namely:

V (D) = {φ ∈ C(S)− {0} with div(φ) +D ≥ 0} ∪ {0} and

W (−D) = {ω ∈ Ω[S]− {0} with div(ω)−D ≥ 0} ∪ {0}

If D =
∑
dipi is an effective divisor, then V (D) is the vector space of

meromorphic functions on S with poles of order ≤ di at each of the points
pi (and no other poles), and W (−D) is the vector space of holomorphic
differentials on S with zeroes of order ≥ di at each point pi (and no poles).

Choose a holomorphic differential ω ∈ Ω(S), and set:

KS = div(ω)

This is called a “canonical” effective divisor of degree 2g− 2, though it isn’t
actually canonical. On the other hand, once ω is chosen, then the vector
spaces V (KS −D) and W (−D) are isomorphic via the map φ 7→ φ ·ω so we
will follow the literature and replace W (−D) with V (KS −D), keeping in
mind that it is really W (−D) that we want to work with.

Note. As we saw earlier, graphs do have truly canonical divisors.

Riemann-Roch. The dimensions of V (D) and V (KS −D) satisfy:

dim(V (D))− dim(V (KS −D)) = deg(D) + 1− g

where g is the genus of the Riemann surface S.

Note. We have assumed a case of the Riemann-Roch Theorem, namely:

dim(V (0))− dim(V (KS)) = 1− g

since V (0) are the constant functions and V (KS) is isomorphic to the vector
space of holomorphic differentials, which we assumed to have dimension g.
Moreover, switching the roles of 0 and KS , we have:

dim(V (KS))− dim(V (0)) = g − 1 = deg(KS) + 1− g

since we have seen that deg(KS) = 2g − 2.

We begin by using residues to prove a Riemann-Roch inequality:
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Proposition 6.1. If D is linearly equivalent to an effective divisor, then:

dim(V (D))− dim(V (KS −D)) ≤ deg(D) + 1− g

Proof: We may assume D itself is effective, since V (D) ∼= V (E) and
V (KS − D) ∼= V (KS − E) whenever D ∼ E. Note that D being linearly
equivalent to an effective divisor is the same as the condition V (D) 6= 0,
and when D is effective, then the constant functions are in V (D), exhibiting
the fact that V (D) is not the zero space. Note also that when V (D) 6= 0,
then |D| 6= ∅ and dim(|D|) = dim(V (D)− 1.

Next we introduce the vector space of Laurent tails, which we define
(non-canonically) by choosing a local coordinate zi near pi with zi = 0 at the
point pi and then setting Laur(D) = {ai,−diz

−di
i + · · ·+ ai,−1z

−1
i | ai,j ∈ C},

a vector space of dimension d = deg(D). We are interested in two maps:

(i) The “tail” map:

λ : V (D)→ Laur(D)

expanding φ as a Laurent series in the variables zi and truncating, and:

(ii) The (locally defined) “residue” pairing:

Laur(D)× Ω[S]→ C

expanding ω = ψ(zi)dzi ∈ Ω[S] around each point pi, multiplying by the
Laurent tail, “reading” off the coefficients of z−1

i dzi, and taking their sum.
This defines a linear map:

ρ : Laur(D)→ Ω[S]∗

(a) The kernel of λ is the vector space of constant functions.

(b) The image of ρ is the kernel of the map Ω[S]∗ →W (−D)∗, and

(c) The composition ρ ◦ λ is the zero map. In other words:

0→ C→ V (D)→ Laur(D)→ Ω[S]∗ → V (KS −D)∗ → 0

is a complex of vector spaces that is exact everywhere except possibly at the
middle term, and then it follows that:

1− dim(V (D)) + d− g + dim(V (KS −D) ≥ 0

which is the desired inequality.
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Remarkably, a case of the Riemann-Roch Theorem follows!

Corollary 6.2. If D and KS −D are both linearly equivalent to effective
divisors, then the Riemann-Roch equality holds for D (and KS −D).

Proof. Apply the Proposition twice!

(1) dim(V (D))− dim(V (KS −D)) ≤ deg(D) + 1− g if D is effective.

(2) dim(V (KS−D))−dim(V (D)) ≤ deg(KS−D)+1−g = −(deg(D)+1−g)
if KS −D is linearly equivalent to an effective divisor.

Taken together, these give the Riemann-Roch equality.

Definition 6.3. A divisor D is special if D and KS −D are both linearly
equivalent to effective divisors.

Thus we have the Riemann-Roch Theorem for special divisors.

Note. Because an effective divisor has non-negative degree, a special divisor
must satisfy 0 ≤ deg(D) ≤ 2g− 2, and of course being special is symmetric;
D is special if and only if KS − D is also special. We will see that most
divisors in this degree range are not special.

Together with the results from §3, we get some nice consequences:

Proposition 6.4. If g(S) ≥ 1, the linear series |KS | is base-point free.

Proof. When g = 1, then KS ∼ 0 and |0| is base-point free.

When g ≥ 2, then each point p ∈ S is special as a divisor, since KS − p
is also effective (we can always find a non-zero differential ω with ω(p) = 0).
Thus by Corollary 6.2., we have:

dim(V (KS − p))− dim(V (p)) = deg(KS)− 1 + 1− g = g − 2

But dim(V (p)) = 1, since V (p) consists entirely of the constant functions,
otherwise S would have a meromorphic function φ ∈ C(S) with a single
pole at p, which would determine a degree one isomorphism φ : S → CP1.
Thus

dim(V (KS − p)) = g − 1 = dim(V (KS))− 1

which is to say that p is not a base point of the linear series |KS |.

Next, a definition:

Definition 6.5. A Riemann surface S of genus g ≥ 2 is hyperelliptic if
there is a meromorphic function φ ∈ C(S) such that the holomorphic map
φ : S → CP1 has degree two.
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Example. Every Riemann surface S of genus two is hyperelliptic.

Indeed, if ω and τ are linearly independent holomorphic differentials on
S (which exist in every genus g ≥ 2), then ω = φ · τ for a non-constant
meromorphic function φ, which defines a holomorphic map φ : S → CP1 of
degree ≤ 2g− 2 (it is smaller than 2g− 2 if ω and τ share common zeroes).
When g = 2, this is therefore a map of degree exactly 2.

Let S be a Riemann surface of genus g ≥ 3.

Proposition 6.6. S is hyperelliptic if and only if the base-point-free linear
series |KS | fails to embed S in CPg−1.

Proof. Suppose φ : S → CP1 is a map of degree two, and let:

div(φ) = p+ q − r − s

(i.e. p and q are the zeroes of φ and r and s are the poles). Then:

dim(V (r + s)) = 2

But r+s and KS− r−s are special divisors (because dim(V (KS)) ≥ 3),
therefore the Riemann-Roch Theorem applies, and we get:

dim(V (KS − r − s))− dim(V (r + s)) = (2g − 4) + 1− g = g − 3

so dim(V (KS− r−s)) = g−1 = dim(V (KS−p)) = dim(V (KS− q)). Thus,
by Proposition 3.13, the map defined by |KS | fails to be injective because
Φ(p) = Φ(q) (or fails to be an immersion at p if p = q).

The converse also holds. If the map Φ associated to the linear series |KS |
either fails to be injective or fails to be an immersion, then there is a divisor
p + q with the property that V (KS − p − q) = V (KS − p) = V (KS − q)
and so by the Riemann Roch Theorem, dim(V (p + q)) ≥ 2, and there is a
(non-constant) meromorphic function φ with poles only at p and q.

Your (Revised) Assignment. Read this and make sense of it. Then:

5. (New) Prove that if S is hyperelliptic, then the map to CPg−1 given by
the canonical linear series factors through the degree two map φ : S → CP1,
followed by an embedding of CP1. Conclude that the degree two map is
unique, if it exists, i.e. a hyperelliptic Riemann surface is hyperelliptic in
only one way.
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