## Riemann Surfaces and Graphs

## 3. Linear Series

We begin with the definition of complex projective space.
Definition 3.1. $\mathbb{C P}^{n}$ is the manifold of complex lines through $0 \in \mathbb{C}^{n+1}$.
A point $x \in \mathbb{C} \mathbb{P}^{n}$ may be labelled with the coordinates of any non-zero point on the line represented by $x$, modulo the equivalence:

$$
\left(x_{0}: \ldots: x_{n}\right) \sim\left(\lambda x_{0}: \ldots . . \lambda x_{n}\right) \text { for any } \lambda \neq 0
$$

In other words, we think of the coordinate as a ratio. We realize $\mathbb{C P}^{n}$ as an $n$-dimensional complex manifold via the topology in which:

$$
U_{i}=\left\{\left(x_{0}: \ldots: x_{i}: \ldots: x_{n}\right) \mid x_{i} \neq 0\right\}=\mathbb{C}^{n}
$$

are open sets, equipped with local coordinates: $z_{k}=x_{k} / x_{i}$ for each $k \neq i$. If $w_{k}=x_{k} / x_{j}, k \neq j$ are local coordinates for $U_{j}=\mathbb{C}^{n}$, then:

$$
z_{k}=\frac{w_{k}}{w_{i}} \text { for } k \neq i, j \text { and } z_{i}=\frac{1}{w_{i}}
$$

are the transitions expressing the $z_{k}$ as holomorphic functions of the $w_{k}$.
Exercise. Check that this agrees with the earlier definition of $\mathbb{C P}^{1}$.
Suppose now that $S$ is a Riemann surface and $\Omega[S]$ is the $g$-dimensional vector space of holomorphic differentials on $S$. For convenience we will choose a basis: $\omega_{0}=\psi_{0}(z) d z, \ldots, \omega_{g-1}=\psi_{g-1}(z) d z \in \Omega[S]$.
Lemma 3.2. The map:

$$
\Psi: S \rightarrow \mathbb{C P}^{g-1} ; \Psi(p)=\left(\psi_{0}(p): \cdots: \psi_{g-1}(p)\right)
$$

is well-defined as written at all points $p \in S$ for which there is a holomorphic differential $\omega=\psi(z) d z$ with $\psi(p) \neq 0$.

Proof. The meromorphic functions $\psi_{i}(z)$ transform according to:

$$
\psi_{i}(z) d z=\psi_{i}(h(w)) h^{\prime}(w) d w
$$

when $z$ is replaced by the local coordinate $w$ with $z=h(w)$. It follows that all the values $\psi_{i}(p)$ are multiplied by the same scalar $\lambda=h^{\prime}(p)$ when transferring from one coordinate to the other. Thus $\Phi$ is well-defined, provided that $\psi_{i}(p) \neq 0$, which, since the $\psi_{i}(z) d z$ are a basis, is the same as saying that $\psi(p) \neq 0$ for some holomorphic differential $\omega=\psi(z) d z$.

It is useful to think about the map $\Psi$ without the choice of basis in mind. In particular, $\Psi$ should be thought of as a map to the projective space of hyperplanes in $\Omega[S]$ via:

$$
\Psi(p)=\{\omega \in \Omega[S] \mid \omega(p)=0\}
$$

which is the space of lines through the origin in the dual vector space $\Omega[S]^{\vee}$. The coordinates of the map are the coefficients of the hyperplane:

$$
\Psi(p)=\left\{\omega=\sum x_{i} \omega_{i} \in \Omega[S] \mid \omega_{0}(p) x_{0}+\cdots+\omega_{g-1}(p) x_{g-1}=0\right\}
$$

(well-defined up to one scalar multiple). From this point of view, we see again that $\Psi$ is well-defined at $p$ precisely when $\Psi(p)$ not all of $\Omega[S]$, i.e. when $\omega(p) \neq 0$ for some $\omega \in \Omega[S]$.

Lemma 3.3. Assume $\Psi$ is well-defined. Then it is injective if and only if:

$$
\Psi(p) \cap \Psi(q)=\{\omega \in \Omega[S] \mid \omega(p)=0=\omega(q)\}
$$

is a codimension two subspace of $\Omega[S]$ for all $p \neq q \in S$.
Proof. $\Psi(p) \neq \Psi(q)$ if and only if $\Psi(p) \cap \Psi(q) \neq \Psi(p)$.
In other words,
(*) The images of $p$ and $q$ are distinct under $\Psi$ if and only if there is a differential $\omega$ with the property that $\omega(p)=0$ but $\omega(q) \neq 0$.

There is a similar criterion for the non-vanishing of the derivative of $\Psi$. Namely, suppose $\Psi(p) \in U_{i}$ and consider the equivalent map:

$$
\Psi(z)=\left(\phi_{0}(z), \ldots, \phi_{g-1}(z)\right) \in U_{i} \text { where } \phi_{k}=\psi_{k} / \psi_{i}
$$

in a local coordinate $z$ at $p$. Then:

$$
\Psi^{\prime}(z)=\left(\phi_{0}^{\prime}(z), \ldots, \phi_{g-1}^{\prime}(z)\right)=(0, \ldots 0) \Leftrightarrow \psi_{k}^{\prime}(z) \psi_{i}(z)=\psi_{k}(z) \psi_{i}^{\prime}(z)
$$

if and only if $\left(\psi_{0}(z): \cdots: \psi_{g-1}(z)\right)=\left(\psi_{0}^{\prime}(z): \cdots: \psi_{g-1}^{\prime}(z)\right)$. I.e.
$(* *) \Psi$ is an immersion at $p$ if and only if there is a differential $\omega$ with $\omega(p)=0$ and the order of vanishing of $\omega$ at $p$ is one.

We will see with the help of the Riemann-Roch Theorem that if $S$ is any Riemann surface, then either:
(a) $S$ has a meromorphic function with two simple poles, or else:
(b) The map $\Psi$ described above is an embedding of $S$ in $\mathbb{C P}^{g-1}$.

This has the effect of "algebraizing" the Riemann surface because of:
Chow's Lemma. If $M$ is a compact complex manifold and $\Phi: M \rightarrow \mathbb{C P}{ }^{n}$ is an embedding, then $M$ is cut out by homogeneous polynomials.

Before we explain this, consider a generalization of the discussion above. Let $1, \phi_{1}, \ldots, \phi_{n}$ be linearly independent meromorphic functions on $S$. Then

$$
\Phi(p)=\left(1: \phi_{1}(p): \cdots: \phi_{n}(p)\right) \in \mathbb{C P}^{n}
$$

is a well-defined map from $S-\left\{\right.$ poles of the $\left.\phi_{i}\right\}$ to $U_{0} \subset \mathbb{C P}^{n}$. This map extends to a holomorphic map from $S$ to $\mathbb{C P}^{n}$ as follows. If $q \in S$ is a pole of some $\phi_{k}$, let $\phi_{i}$ be the meromorphic function for which the pole at $q$ has maximal (negative) order. Then:

$$
\Phi(z)=\left(\left(1 / \phi_{i}\right)(z): \cdots:\left(\phi_{k} / \phi_{i}\right)(z): \ldots\right)
$$

has the same image as $\Phi$ near $q$ and extends the map holomorphically across $q$ to an image point in $U_{i}-U_{0}$. This can evidently be done for all $q \in S$.

Again, if we let $V=\left\langle 1, \phi_{1}, \ldots, \phi_{n}\right\rangle$ then we can think of the map in a basis-free manner by setting $\Phi(p)=\left\{\phi \in V \mid \operatorname{ord}_{p}(\phi)>\min _{i} \operatorname{ord}_{p}\left(\phi_{i}\right)\right\}$ and then the analogues of $(*)$ and $(* *)$ in this setting are:
$(*) \Phi(p) \neq \Phi(q)$ if and only if there is a meromorphic function $\phi \in V$ such that $\operatorname{ord}_{p}(\phi)>\min _{i} \operatorname{ord}_{p}\left(\phi_{i}\right)$ but $\operatorname{ord}_{q}(\phi)=\min _{i} \operatorname{ord}_{p}\left(\phi_{i}\right)$.
$(* *) \Phi$ is an immersion at $p$ if and only if there is a meromorphic function $\phi \in V$ such that $\operatorname{ord}_{p}(\phi)=\min _{i} \operatorname{ord}_{p}\left(\phi_{i}\right)+1$.
Exercise. Extend the map from $\S 2$ :

$$
\Phi=\left(1: \mathcal{P}: \mathcal{P}^{\prime}\right): \mathbb{C} / \Lambda \rightarrow \mathbb{C P}^{2}
$$

and prove that it is an embedding.
Equations. A homogeneous polynomial of degree $d$;
$F\left(x_{0}, \ldots, x_{n}\right)=\sum_{|I|=d} c_{I} x^{I} ;$ with $c_{I} \in \mathbb{C}, x^{I}=x_{0}^{d_{0}} \cdots x_{n}^{d_{n}}$ for $I=\left(d_{0}, \ldots, d_{n}\right)$
is not a function on $\mathbb{C P}^{n}$ since $F\left(\lambda x_{0}, \ldots, \lambda x_{n}\right)=\lambda^{d} F\left(x_{0}, \ldots, x_{n}\right)$, but

$$
V(F)=\left\{\left(x_{0}: \ldots . x_{n}\right) \in \mathbb{C P}^{n} \mid F\left(x_{0}, \ldots, x_{n}\right)=0\right\} \subset \mathbb{C P}^{n}
$$

cuts out a well-defined hypersurface in $\mathbb{C P}^{n}$.

Example. (a) Linear equations $\sum_{i=0}^{n} a_{i} x_{i}=0$ cut out vector subspaces $V \subset \mathbb{C}^{n+1}$ and linear projective subspaces of lines through the origin in $V$.
(b) If $f\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ is a polynomial of degree $d$, then the affine hypersurface $\left\{z=\left(z_{1}, \ldots, z_{n}\right) \mid f(z)=0\right\} \subset \mathbb{C}^{n}$ may be completed by setting $\mathbb{C}^{n}=U_{0} \subset \mathbb{C P}^{n}$ and letting $F\left(x_{0}, \ldots, x_{n}\right)=x_{0}^{d} f\left(x_{1} / x_{0}, \ldots, x_{n} / x_{0}\right)$. Then $V(F)=V(f) \cup\left(V(F) \cap V\left(x_{0}\right)\right)$ completes $V(f)$ with the additional points of the projective hypersurface $V\left(F\left(0, x_{1}, \ldots, x_{n}\right)\right) \subset V\left(x_{0}\right)=\mathbb{C} \mathbb{P}^{n-1}$.

In two variables, the hypersurface $V(f) \subset \mathbb{C}^{2}$ is a plane curve, which is completed with a finite set of points in the projective line at infinity $\mathbb{C P}^{2}-U_{0}$. For example, let $r_{1}, \ldots, r_{d} \in \mathbb{C}$ for $d \geq 2$, and consider:

$$
f\left(z_{1}, z_{2}\right)=z_{2}^{2}-\left(z_{1}-r_{1}\right) \cdots\left(z_{1}-r_{d}\right)
$$

Then $F\left(z_{0}, z_{1}, z_{2}\right)=z_{0}^{d-2} z_{2}^{2}-\left(z_{1}-r_{1} z_{0}\right) \cdots\left(z_{1}-r_{d} z_{0}\right)$ and

$$
V(F) \cap V\left(z_{0}\right)=\left\{\begin{array}{l}
\{(0: 0: 1)\} \text { when } d>2 \\
\{(0: 1: 1),(0: 1:-1)\} \text { when } d=2
\end{array}\right.
$$

Lemma 3.4. Given $F$, if the locus of zeroes in $\mathbb{C P}^{n}$ of the gradient:

$$
\nabla(F)=\left(\partial F / \partial x_{0}, \ldots, \partial F / \partial x_{n}\right)
$$

is empty, then $V(F)$ is a complex submanifold of $\mathbb{C P}^{n}$ of dimension $n-1$. Note. The locus of zeroes of $\nabla F$ is an intersection of hypersurfaces:

$$
V\left(\partial F / \partial x_{0}\right) \cap \cdots \cap V\left(\partial F / \partial x_{n}\right)
$$

which is expected to be empty because these are $n+1$ equation conditions.
Proof. On each open set $U_{i}$ with coordinates $z_{k}=x_{k} / x_{i}$,

$$
F\left(z_{0}, . ., x_{i} / x_{i}=1, . ., z_{n}\right)=\frac{F\left(x_{0}, \ldots, x_{n}\right)}{x_{i}^{d}} \text { and } \frac{\partial F}{\partial z_{k}}=\frac{\partial F}{\partial x_{k}} / x_{i}^{d-1} \text { for } k \neq i
$$

Thus if $p \in V(F) \cap U_{i}$ and some partial derivative $\partial F / \partial x_{k}(p) \neq 0$ for $k \neq i$, then $\partial F / \partial z_{k}(p) \neq 0$ and by the implicit function theorem, $V(F) \cap U_{i}$ is a complex submanifold of $U_{i}=\mathbb{C}^{n}$ in a neighborhood of $p$. On the other hand, if $p \in U_{i}$ and $\partial F / \partial x_{k}(p)=0$ for all $k \neq i$, then from Euler's identity:

$$
d \cdot F(p)=\sum_{k=0}^{n} x_{k} \cdot \frac{\partial F}{\partial x_{k}}(p)
$$

it follows that $p \in V(F) \cap U_{i}$ if and only if $\partial F / \partial x_{i}(p)=0$.

Example. The (ordinary) gradient of the affine hyperelliptic plane curve:

$$
\begin{gathered}
f\left(z_{1}, z_{2}\right)=z_{2}^{2}-\left(z_{1}-r_{1}\right) \cdots\left(z_{1}-r_{d}\right) \text { is } \\
\nabla f=\left(-\sum_{i} \prod_{j \neq i}\left(z_{1}-r_{j}\right), 2 z_{2}\right)
\end{gathered}
$$

which is therefore only zero at the point $\left(r_{i}, 0\right)$ for a root $r_{i}$ with multiplicity two or more. Thus if all roots are distinct, then $V(f)$ is a Riemann surface. On the other hand, if $d>2$ consider the point $(0: 0: 1) \in V(F) \cap U_{2}$. Then:
$\nabla F=\left((d-2) x_{0}^{d-3} x_{2}^{2}+\sum_{i} r_{i} \prod_{j \neq i}\left(x_{1}-r_{j} x_{0}\right),-\sum_{i} \prod_{j \neq i}\left(x_{1}-r_{j} x_{0}\right), 2 x_{0}^{d-2} x_{2}\right)$
is non-zero at $(0: 0: 1)$ if and only if $d=3$.
Exercise. Analyze the case $d=2$.
Definition 3.5. A hypersurface $V(F) \subset \mathbb{C P}^{2}$ with non-vanishing gradient is a smooth plane curve. By Lemma 3.4, it is a closed Riemann surface.

Question. What is the genus of a smooth plane curve of degree $d$ ?
We will also have occasion to use plane curves that are not smooth. Suppose $0 \in V(f)$ and $\nabla(f)(0)=0$. Then the expansion of $f$ :

$$
f\left(z_{1}, z_{2}\right)=f_{0}+f_{1}+f_{2}+f_{3}+\cdots+f_{d}
$$

in homogeneous summands satisfies $f_{0}=f_{1}=0$. Factoring:

$$
f_{e}\left(z_{1}, z_{2}\right)=\prod_{i=1}^{e}\left(a_{i} z_{1}-b_{i} z_{2}\right) \text { for the first nonzero } f_{e}
$$

determines $e$ lines in $\mathbb{C}^{2}$ through 0 that make up the tangent cone to $f$ at 0 . When $e=2$ is the first non-zero homogeneous summand, then:
(a) $V(f)$ has a simple node at 0 if the tangent cone is two distinct lines.
(b) $V(f)$ has an ordinary cusp at 0 if $f_{2}$ is a square.

Exercise. (i) What is the tangent cone of the point at infinity in the affine hyperelliptic curve example above when $d \geq 4$ ?
(ii) Find examples of homogeneous polynomials $F\left(x_{0}, x_{1}, x_{2}\right)$ in every degree with the property that $V(F)$ is a smooth projective plane curve.

Lemma 3.4 generalizes to intersections of hypersurfaces. For example:
Lemma 3.6. If $F_{1}, \ldots, F_{n-m}$ are homogeneous polynomials in the $x_{0}, \ldots, x_{n}$ (of various degrees) and if $p \in V\left(F_{1}\right) \cap \cdots \cap V\left(F_{n-m}\right)$ and the Jacobian:

$$
\operatorname{det}\left(\frac{\partial F_{i}}{\partial x_{j}}\right)(p) \text { has rank } n-m
$$

then in a neighborhood of $p \in \mathbb{C P}^{n}$, the intersection $V\left(F_{1}\right) \cap \cdots \cap V\left(F_{n-1}\right)$ cuts out a complex submanifold of dimension $m$.
Remark. Chow's Lemma asserts that if $\Phi: M \rightarrow \mathbb{C P}^{n}$ is an embedding of a compact complex manifold of dimension $m$, then for each $p \in M$, there are homogeneous polynomials $F_{1}, \ldots, F_{n-m}$ as in the Lemma above that (necessarily) cut out the image of $M$ in a neighborhood of $p$. However, as the following example shows, there need not be homogeneous polynomials that cut out the image of $M$ for all points $p \in M$ at once.
Example. Consider the three quadratic polynomials:

$$
Q_{1}=x_{0} x_{2}-x_{1}^{2}, Q_{2}=x_{0} x_{3}-x_{1} x_{2} \text { and } Q_{3}=x_{1} x_{3}-x_{2}^{2}
$$

that collectively cut out the embedded twisted cubic curve:

$$
\Phi: \mathbb{C P}^{1} \rightarrow C \subset \mathbb{C P}^{3} ; \Phi(z)=\left(1: z: z^{2}: z^{3}\right)=\left(w^{3}: w^{2}: w: 1\right)
$$

Note that the quadratic polynomial $Q_{2}$ itself cuts out a submanifold of dimension two, since $\nabla Q_{2}=\left(x_{3},-x_{2},-x_{1}, x_{0}\right)$ is never zero but $Q_{1}$ and $Q_{2}$ are singular at $(0: 0: 0: 1)$ and $(1: 0: 0: 0)$, respectively. In fact, the map:
$\mathbb{C P}^{1} \times \mathbb{C P}^{1} \rightarrow V\left(Q_{2}\right) \subset \mathbb{C P}^{2} ;\left(\left(a_{0}: a_{1}\right),\left(b_{0}: b_{1}\right)\right) \mapsto\left(a_{0} b_{0}: a_{1} b_{0}: a_{0} b_{1}: a_{1} b_{1}\right)$
is an isomorphism of complex surfaces, mapping each $\mathbb{C P}^{1} \times\left\{\left(b_{0}: b_{1}\right)\right\}$ and $\left\{\left(a_{0}: a_{1}\right)\right\} \times \mathbb{C P}^{1}$ to a pair of intersecting lines in $\mathbb{C P}^{3}$. If $Q, Q^{\prime}$ are linearly independent in the vector space $\left\langle Q_{1}, Q_{2}, Q_{3}\right\rangle$, then $V(Q) \cap V\left(Q^{\prime}\right)=C \cup l$, where $l$ is a line intersecting $C$ in two points. But $l$ depends on the choice of $Q, Q^{\prime}$, and altogether $V\left(Q_{1}\right) \cap V\left(Q_{2}\right) \cap V\left(Q_{3}\right)$ cut out the twisted cubic.

Question. A pair of non-constant meromorphic functions $\phi, \psi$ on $S$ give

$$
\Phi:=(\phi, \psi): S \rightarrow \mathbb{C P}^{1} \times \mathbb{C P}^{1}=V\left(Q_{2}\right)
$$

When do $\phi$ and $\psi$ determine an injective map? An immersion? If $\phi, \psi$ have degrees $d, e$ and $\Phi$ is an embedding, what is the genus of $S$ ?

Definition 3.7. A pair of divisors $D, D^{\prime} \in \mathbb{Z}[S]_{d}$ are linearly equivalent (written $D \sim D^{\prime}$ ) if $D+\operatorname{div}(\phi)=D^{\prime}$ for some (non-zero) $\phi \in \mathbb{C}(S)$.
Lemma 3.8. Linear equivalence is an equivalence relation.
Proof. (a) $D+\operatorname{div}(1)=D$, so the relation is reflexive.
(b) If $D+\operatorname{div}(\phi)=D^{\prime}$, then $D^{\prime}+\operatorname{div}(1 / \phi)=D$, so the relation is symmetric.
(c) If $D+\operatorname{div}(\phi)=D^{\prime}$ and $D^{\prime}+\operatorname{div}(\psi)=D^{\prime \prime}$, then $D+\operatorname{div}(\phi \psi)=D^{\prime \prime}$ so the relation is transitive.

Definition 3.9. For any divisor $D$ of degree $d$, let:

$$
|D|=\left\{D^{\prime} \mid D \sim D^{\prime} \text { and } D^{\prime} \text { is effective }\right\} \subset S_{d}
$$

Lemma 3.10. $|D|=\emptyset$ or else $|D|=\mathbb{C} \mathbb{P}^{r}$ for some $r \geq 0$.
Proof. We may assume that $D$ is effective. Let:

$$
D=\sum d_{p} p \in S_{d}
$$

Then $D+\operatorname{div}(\phi)=D^{\prime}$ is an effective divisor if and only if $\operatorname{ord}_{p}(\phi) \geq d_{p}$ for all $p \in S$, but if $\operatorname{ord}_{p}(\phi) \geq m$ and $\operatorname{ord}_{p}(\psi) \geq m$ then $\operatorname{ord}_{p}(\phi+\psi) \geq m$, so the set of such meromorphic functions $\phi$ (together with zero) is a vector space $V$ of dimension $\leq d+1$. Finally, a divisor $D^{\prime} \in|D|$ determines the meromorphic function $\phi$ with $\operatorname{div}(\phi)=D^{\prime}-D$ up to a scalar multiple, so $|D|$ is the projective space of lines through the origin in $V$.

Corollary 3.11. $r=r(D)$ agrees with Definition 1.9 (adapted from graphs).
Proof. Given $E=\sum e_{p} p \in S_{e}$, let $V(-E) \subset V$ be the vector subspace of meromorphic functions with the property that $\operatorname{ord}_{p}(\phi) \geq d_{p}-e_{p}$. Then:
(i) The projective space of lines through $0 \in V(-E)$ is:

$$
|D-E|=\left\{D^{\prime} \in|D| \mid D^{\prime}=E+\text { effective }\right\} \text { and }
$$

(ii) $\operatorname{dim}(V(-E)) \geq r+1-e$ for all $E$ and $=r+1-e$ for some $E$.

Definition 3.12. A point $p \in S$ is a base point of $|D|$ if $r(D-p)=r(D)$. The linear series $|D|$ is base point free if it has no base points.

In other words, $|D|$ is base point free if $\operatorname{dim}(V(-p))=r$ for all $p \in S$.
Proposition 3.13. If the linear series $|D|$ is base point free, then:

$$
\Phi_{D}: S \rightarrow \mathbb{C P}^{r} ; \Phi_{D}(p)=V(-p)
$$

defines a map to the projective space of hyperplanes in $V$ that:
(*) Separates $p$ and $q$ if $r(D-p-q))=r-2$ and
$(* *)$ Is an immersion at $p$ if $r(D-2 p)=r-2$.
Example. Let $S=\mathbb{C P}^{1}$ and $D$ be any divisor of degree $d \geq 0$. Then $|D|$ is base-point free, and if $d \geq 1$, then $\Phi_{D}$ is an embedding.

