
Riemann Surfaces and Graphs
3. Linear Series

We begin with the definition of complex projective space.

Definition 3.1. CPn is the manifold of complex lines through 0 ∈ Cn+1.

A point x ∈ CPn may be labelled with the coordinates of any non-zero
point on the line represented by x, modulo the equivalence:

(x0 : .... : xn) ∼ (λx0 : .... : λxn) for any λ 6= 0

In other words, we think of the coordinate as a ratio. We realize CPn as an
n-dimensional complex manifold via the topology in which:

Ui = {(x0 : ... : xi : .... : xn) | xi 6= 0} = Cn

are open sets, equipped with local coordinates: zk = xk/xi for each k 6= i.
If wk = xk/xj , k 6= j are local coordinates for Uj = Cn, then:

zk =
wk

wi
for k 6= i, j and zi =

1

wi

are the transitions expressing the zk as holomorphic functions of the wk.

Exercise. Check that this agrees with the earlier definition of CP1.

Suppose now that S is a Riemann surface and Ω[S] is the g-dimensional
vector space of holomorphic differentials on S. For convenience we will
choose a basis: ω0 = ψ0(z)dz, ..., ωg−1 = ψg−1(z)dz ∈ Ω[S].

Lemma 3.2. The map:

Ψ : S → CPg−1; Ψ(p) = (ψ0(p) : · · · : ψg−1(p))

is well-defined as written at all points p ∈ S for which there is a holomorphic
differential ω = ψ(z)dz with ψ(p) 6= 0.

Proof. The meromorphic functions ψi(z) transform according to:

ψi(z)dz = ψi(h(w))h′(w)dw

when z is replaced by the local coordinate w with z = h(w). It follows that
all the values ψi(p) are multiplied by the same scalar λ = h′(p) when trans-
ferring from one coordinate to the other. Thus Φ is well-defined, provided
that ψi(p) 6= 0, which, since the ψi(z)dz are a basis, is the same as saying
that ψ(p) 6= 0 for some holomorphic differential ω = ψ(z)dz.
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It is useful to think about the map Ψ without the choice of basis in mind.
In particular, Ψ should be thought of as a map to the projective space of
hyperplanes in Ω[S] via:

Ψ(p) = {ω ∈ Ω[S] | ω(p) = 0}

which is the space of lines through the origin in the dual vector space Ω[S]∨.
The coordinates of the map are the coefficients of the hyperplane:

Ψ(p) = {ω =
∑

xiωi ∈ Ω[S] | ω0(p)x0 + · · ·+ ωg−1(p)xg−1 = 0}

(well-defined up to one scalar multiple). From this point of view, we see
again that Ψ is well-defined at p precisely when Ψ(p) not all of Ω[S], i.e.
when ω(p) 6= 0 for some ω ∈ Ω[S].

Lemma 3.3. Assume Ψ is well-defined. Then it is injective if and only if:

Ψ(p) ∩Ψ(q) = {ω ∈ Ω[S] | ω(p) = 0 = ω(q)}

is a codimension two subspace of Ω[S] for all p 6= q ∈ S.

Proof. Ψ(p) 6= Ψ(q) if and only if Ψ(p) ∩Ψ(q) 6= Ψ(p).

In other words,
(∗) The images of p and q are distinct under Ψ if and only if there is a

differential ω with the property that ω(p) = 0 but ω(q) 6= 0.

There is a similar criterion for the non-vanishing of the derivative of Ψ.
Namely, suppose Ψ(p) ∈ Ui and consider the equivalent map:

Ψ(z) = (φ0(z), ..., φg−1(z)) ∈ Ui where φk = ψk/ψi

in a local coordinate z at p. Then:

Ψ′(z) = (φ′0(z), ..., φ
′
g−1(z)) = (0, ...0)⇔ ψ′k(z)ψi(z) = ψk(z)ψ′i(z)

if and only if (ψ0(z) : · · · : ψg−1(z)) = (ψ′0(z) : · · · : ψ′g−1(z)). I.e.
(∗∗) Ψ is an immersion at p if and only if there is a differential ω with

ω(p) = 0 and the order of vanishing of ω at p is one.

We will see with the help of the Riemann-Roch Theorem that if S is any
Riemann surface, then either:

(a) S has a meromorphic function with two simple poles, or else:

(b) The map Ψ described above is an embedding of S in CPg−1.
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This has the effect of “algebraizing” the Riemann surface because of:

Chow’s Lemma. If M is a compact complex manifold and Φ : M → CPn

is an embedding, then M is cut out by homogeneous polynomials.

Before we explain this, consider a generalization of the discussion above.
Let 1, φ1, ...., φn be linearly independent meromorphic functions on S. Then

Φ(p) = (1 : φ1(p) : · · · : φn(p)) ∈ CPn

is a well-defined map from S − {poles of the φi} to U0 ⊂ CPn. This map
extends to a holomorphic map from S to CPn as follows. If q ∈ S is a pole
of some φk, let φi be the meromorphic function for which the pole at q has
maximal (negative) order. Then:

Φ(z) = ((1/φi) (z) : · · · : (φk/φi) (z) : ...)

has the same image as Φ near q and extends the map holomorphically across
q to an image point in Ui − U0. This can evidently be done for all q ∈ S.

Again, if we let V = 〈1, φ1, ..., φn〉 then we can think of the map in a
basis-free manner by setting Φ(p) = {φ ∈ V | ordp(φ) > mini ordp(φi)} and
then the analogues of (∗) and (∗∗) in this setting are:

(∗) Φ(p) 6= Φ(q) if and only if there is a meromorphic function φ ∈ V
such that ordp(φ) > mini ordp(φi) but ordq(φ) = mini ordp(φi).

(∗∗) Φ is an immersion at p if and only if there is a meromorphic function
φ ∈ V such that ordp(φ) = mini ordp(φi) + 1.

Exercise. Extend the map from §2:

Φ = (1 : P : P ′) : C/Λ→ CP2

and prove that it is an embedding.

Equations. A homogeneous polynomial of degree d;

F (x0, ..., xn) =
∑
|I|=d

cIx
I ; with cI ∈ C, xI = xd00 · · ·x

dn
n for I = (d0, ..., dn)

is not a function on CPn since F (λx0, ...., λxn) = λdF (x0, ..., xn), but

V (F ) = {(x0 : .... : xn) ∈ CPn | F (x0, ...., xn) = 0} ⊂ CPn

cuts out a well-defined hypersurface in CPn.
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Example. (a) Linear equations
∑n

i=0 aixi = 0 cut out vector subspaces
V ⊂ Cn+1 and linear projective subspaces of lines through the origin in V .

(b) If f(z1, ...., zn) ∈ C[z1, ..., zn] is a polynomial of degree d, then the
affine hypersurface {z = (z1, ..., zn) | f(z) = 0} ⊂ Cn may be completed by
setting Cn = U0 ⊂ CPn and letting F (x0, ..., xn) = xd0f(x1/x0, ...., xn/x0).
Then V (F ) = V (f) ∪ (V (F ) ∩ V (x0)) completes V (f) with the additional
points of the projective hypersurface V (F (0, x1, ..., xn)) ⊂ V (x0) = CPn−1.

In two variables, the hypersurface V (f) ⊂ C2 is a plane curve, which
is completed with a finite set of points in the projective line at infinity
CP2 − U0. For example, let r1, ..., rd ∈ C for d ≥ 2, and consider:

f(z1, z2) = z22 − (z1 − r1) · · · (z1 − rd)

Then F (z0, z1, z2) = zd−20 z22 − (z1 − r1z0) · · · (z1 − rdz0) and

V (F ) ∩ V (z0) =

{
{(0 : 0 : 1)} when d > 2
{(0 : 1 : 1), (0 : 1 : −1)} when d = 2

Lemma 3.4. Given F , if the locus of zeroes in CPn of the gradient:

∇(F ) = (∂F/∂x0, . . . , ∂F/∂xn)

is empty, then V (F ) is a complex submanifold of CPn of dimension n− 1.
Note. The locus of zeroes of ∇F is an intersection of hypersurfaces:

V (∂F/∂x0) ∩ · · · ∩ V (∂F/∂xn)

which is expected to be empty because these are n+ 1 equation conditions.

Proof. On each open set Ui with coordinates zk = xk/xi,

F (z0, .., xi/xi = 1, .., zn) =
F (x0, ..., xn)

xdi
and

∂F

∂zk
=
∂F

∂xk
/xd−1i for k 6= i

Thus if p ∈ V (F )∩Ui and some partial derivative ∂F/∂xk(p) 6= 0 for k 6= i,
then ∂F/∂zk(p) 6= 0 and by the implicit function theorem, V (F ) ∩ Ui is a
complex submanifold of Ui = Cn in a neighborhood of p. On the other hand,
if p ∈ Ui and ∂F/∂xk(p) = 0 for all k 6= i, then from Euler’s identity:

d · F (p) =
n∑

k=0

xk ·
∂F

∂xk
(p)

it follows that p ∈ V (F ) ∩ Ui if and only if ∂F/∂xi(p) = 0.
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Example. The (ordinary) gradient of the affine hyperelliptic plane curve:

f(z1, z2) = z22 − (z1 − r1) · · · (z1 − rd) is

∇f =

−∑
i

∏
j 6=i

(z1 − rj), 2z2


which is therefore only zero at the point (ri, 0) for a root ri with multiplicity
two or more. Thus if all roots are distinct, then V (f) is a Riemann surface.
On the other hand, if d > 2 consider the point (0 : 0 : 1) ∈ V (F )∩U2. Then:

∇F =

(d− 2)xd−30 x22 +
∑
i

ri
∏
j 6=i

(x1 − rjx0),−
∑
i

∏
j 6=i

(x1 − rjx0), 2xd−20 x2


is non-zero at (0 : 0 : 1) if and only if d = 3.

Exercise. Analyze the case d = 2.

Definition 3.5. A hypersurface V (F ) ⊂ CP2 with non-vanishing gradient
is a smooth plane curve. By Lemma 3.4, it is a closed Riemann surface.

Question. What is the genus of a smooth plane curve of degree d?

We will also have occasion to use plane curves that are not smooth.
Suppose 0 ∈ V (f) and ∇(f)(0) = 0. Then the expansion of f :

f(z1, z2) = f0 + f1 + f2 + f3 + · · ·+ fd

in homogeneous summands satisfies f0 = f1 = 0. Factoring:

fe(z1, z2) =
e∏

i=1

(aiz1 − biz2) for the first nonzero fe

determines e lines in C2 through 0 that make up the tangent cone to f at 0.
When e = 2 is the first non-zero homogeneous summand, then:

(a) V (f) has a simple node at 0 if the tangent cone is two distinct lines.

(b) V (f) has an ordinary cusp at 0 if f2 is a square.

Exercise. (i) What is the tangent cone of the point at infinity in the affine
hyperelliptic curve example above when d ≥ 4?

(ii) Find examples of homogeneous polynomials F (x0, x1, x2) in every
degree with the property that V (F ) is a smooth projective plane curve.
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Lemma 3.4 generalizes to intersections of hypersurfaces. For example:

Lemma 3.6. If F1, ...., Fn−m are homogeneous polynomials in the x0, ..., xn
(of various degrees) and if p ∈ V (F1) ∩ · · · ∩ V (Fn−m) and the Jacobian:

det

(
∂Fi

∂xj

)
(p) has rank n−m

then in a neighborhood of p ∈ CPn, the intersection V (F1) ∩ · · · ∩ V (Fn−1)
cuts out a complex submanifold of dimension m.

Remark. Chow’s Lemma asserts that if Φ : M → CPn is an embedding of
a compact complex manifold of dimension m, then for each p ∈ M , there
are homogeneous polynomials F1, ...., Fn−m as in the Lemma above that
(necessarily) cut out the image of M in a neighborhood of p. However, as
the following example shows, there need not be homogeneous polynomials
that cut out the image of M for all points p ∈M at once.

Example. Consider the three quadratic polynomials:

Q1 = x0x2 − x21, Q2 = x0x3 − x1x2 and Q3 = x1x3 − x22

that collectively cut out the embedded twisted cubic curve:

Φ : CP1 → C ⊂ CP3; Φ(z) = (1 : z : z2 : z3) = (w3 : w2 : w : 1)

Note that the quadratic polynomial Q2 itself cuts out a submanifold of
dimension two, since ∇Q2 = (x3,−x2,−x1, x0) is never zero but Q1 and Q2

are singular at (0 : 0 : 0 : 1) and (1 : 0 : 0 : 0), respectively. In fact, the map:

CP1×CP1 → V (Q2) ⊂ CP2; ((a0 : a1), (b0 : b1)) 7→ (a0b0 : a1b0 : a0b1 : a1b1)

is an isomorphism of complex surfaces, mapping each CP1 × {(b0 : b1)} and
{(a0 : a1)} ×CP1 to a pair of intersecting lines in CP3. If Q,Q′ are linearly
independent in the vector space 〈Q1, Q2, Q3〉, then V (Q) ∩ V (Q′) = C ∪ l,
where l is a line intersecting C in two points. But l depends on the choice
of Q,Q′, and altogether V (Q1) ∩ V (Q2) ∩ V (Q3) cut out the twisted cubic.

Question. A pair of non-constant meromorphic functions φ, ψ on S give

Φ := (φ, ψ) : S → CP1 × CP1 = V (Q2)

When do φ and ψ determine an injective map? An immersion? If φ, ψ have
degrees d, e and Φ is an embedding, what is the genus of S?
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Definition 3.7. A pair of divisors D,D′ ∈ Z[S]d are linearly equivalent
(written D ∼ D′) if D + div(φ) = D′ for some (non-zero) φ ∈ C(S).

Lemma 3.8. Linear equivalence is an equivalence relation.

Proof. (a) D + div(1) = D, so the relation is reflexive.

(b) If D+div(φ) = D′, then D′+div(1/φ) = D, so the relation is symmetric.

(c) If D + div(φ) = D′ and D′ + div(ψ) = D′′, then D + div(φψ) = D′′ so
the relation is transitive.

Definition 3.9. For any divisor D of degree d, let:

|D| = {D′ | D ∼ D′ and D′ is effective} ⊂ Sd

Lemma 3.10. |D| = ∅ or else |D| = CPr for some r ≥ 0.

Proof. We may assume that D is effective. Let:

D =
∑

dpp ∈ Sd

Then D + div(φ) = D′ is an effective divisor if and only if ordp(φ) ≥ dp
for all p ∈ S, but if ordp(φ) ≥ m and ordp(ψ) ≥ m then ordp(φ + ψ) ≥ m,
so the set of such meromorphic functions φ (together with zero) is a vector
space V of dimension ≤ d + 1. Finally, a divisor D′ ∈ |D| determines the
meromorphic function φ with div(φ) = D′ − D up to a scalar multiple, so
|D| is the projective space of lines through the origin in V .

Corollary 3.11. r = r(D) agrees with Definition 1.9 (adapted from graphs).

Proof. Given E =
∑
epp ∈ Se, let V (−E) ⊂ V be the vector subspace

of meromorphic functions with the property that ordp(φ) ≥ dp − ep. Then:

(i) The projective space of lines through 0 ∈ V (−E) is:

|D − E| = {D′ ∈ |D| | D′ = E + effective} and

(ii) dim(V (−E)) ≥ r + 1− e for all E and = r + 1− e for some E.

Definition 3.12. A point p ∈ S is a base point of |D| if r(D − p) = r(D).
The linear series |D| is base point free if it has no base points.

In other words, |D| is base point free if dim(V (−p)) = r for all p ∈ S.

Proposition 3.13. If the linear series |D| is base point free, then:

ΦD : S → CPr; ΦD(p) = V (−p)
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defines a map to the projective space of hyperplanes in V that:

(∗) Separates p and q if r(D − p− q)) = r − 2 and

(∗∗) Is an immersion at p if r(D − 2p) = r − 2.

Example. Let S = CP1 and D be any divisor of degree d ≥ 0. Then |D| is
base-point free, and if d ≥ 1, then ΦD is an embedding.
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