The Genus of a Riemann Surface in the Plane

Let $S \subset \mathbb{C P}^{2}$ be a plane curve of degree δ. We prove here that:

$$
g=\frac{(\delta-1)(\delta-2)}{2}
$$

We'll start with a version of the:
Bézout Theorem. If $S \subset \mathbb{C P}^{n}$ has degree δ and G is a homogeneous polynomial of degree d not vanishing identically on S (i.e. $G \notin I_{d}$), then

$$
\operatorname{deg}(\operatorname{div}(G))=d \delta
$$

Proof. The intersection $V(G) \cap S$ is a finite set. We choose a linear form l that is non-zero on all the points of $V(G) \cap S$, and then $\phi=G / l^{d}$ is meromorphic when restricted to S, and $\operatorname{div}(G)-d \cdot \operatorname{div}(l)=\operatorname{div}(\phi)$ has degree zero. But $\operatorname{div}(l)$ has degree δ, by the definition of δ.

Now let $S \subset \mathbb{C P}^{2}$ be a planar embedding of a Riemann surface, and let $F \in \mathbb{C}\left[x_{0}, x_{1}, x_{2}\right]_{\delta}$ generate the ideal I of S and assume, changing coordinates if necessary, that $(0: 1: 0) \notin S$ and that the line $x_{2}=0$ is transverse to S, necessarily meeting S in δ points.

Proof Sketch. Projecting from $p=(0: 1: 0)$ gives a holomorphic map:

$$
\pi: S \rightarrow \mathbb{C P}^{1}
$$

(as a map from $\mathbb{C P}^{2}$ to $\mathbb{C P}^{1}$, the projection is defined at every point except for p itself). In the open set $U_{2}=\left\{\left(x_{0}: x_{1}: x_{2}\right) \mid x_{2} \neq 0\right\}=\mathbb{C}^{2}$ with local coordinates $x=x_{0} / x_{2}$ and $y=x_{1} / x_{2}, \pi$ is the projection onto the x-axis. In these coordinates, the line at infinity is $x_{2}=0$ and maps to $\infty \in \mathbb{C P}^{1}$ and does not contribute to the ramification of the map π. Then:
(i) The degree of the map π is δ.
(ii) The ramification divisor of the map π is:

$$
\sum_{p}\left(e_{p}-1\right) \cdot p=\operatorname{div}\left(\frac{\partial F}{\partial x_{1}}\right)
$$

Keeping in mind that the partial derivative has degree $\delta-1$, we get:

$$
2 g-2=\delta \cdot(-2)+\sum_{p}\left(e_{p}-1\right)=-2 \delta+\delta \cdot(\delta-1)
$$

from the Riemann-Hurwitz and Bézout Theorems, giving the genus formula.

Let's go into each of these in greater detail.
(o) Projection from $p=(0: 1: 0)$ is projection to the x-axis.

The lines through p all have equations: $a x_{0}+c x_{2}=0$ which, with the exception of the line $x_{2}=0$, all have the form:

$$
\frac{x_{0}}{x_{2}}=x=-\frac{c}{a}
$$

in the local coordinates (x, y). Thus, the fibers of the projection are vertical.
(i) The degree of the map π is δ.

The degree of π is the number of points of the intersection of S with any line through p that intersects S transversely. This number is δ.
(ii) At each point $q=\left(x_{0}, y_{0}\right) \in S$, we have

$$
e_{q}-1=\operatorname{ord}_{q}\left(\frac{\partial f}{\partial y}\right)=\operatorname{ord}_{q}\left(\frac{\partial F}{\partial x_{1}}\right)
$$

where $f(x, y)=F\left(x_{0}, x_{1}, x_{2}\right) / x_{2}^{\delta}$ is the polynomial cutting out S in the open set $U_{2}=\mathbb{C}^{2}$. The second equality follows immediately from the chain rule. The first equality is the crux of the matter.

We can assume $q=(0,0) \in S$ by translating the x and y variables without affecting either side of the equation, and then:

$$
f(x, y)=a x+b y+\text { higher order, with } a b \neq 0
$$

and $a x+b y=0$ is the tangent line to S at q.
Suppose first that $b \neq 0$. Then $x=0$ is not tangent to S, so $e_{q}=1$. On the other hand, $(\partial f / \partial y)(q)=b \neq 0$, and so $\operatorname{ord}_{q}(\partial f / \partial y)=0=e_{q}-1$. Check. Now suppose $b=0$ (so $a \neq 0$). We collect all terms divisible by x and then factor out the largest power of y in the remaining terms to get:

$$
f(x, y)=x g(x, y)+y^{e} h(x, y) \text { for some } 1<e \leq \delta
$$

with $g(q) \neq 0$ and $h(q) \neq 0$. Then on S (where $f \equiv 0$), we have:

$$
-x g(x, y)=y^{e} h(x, y), \text { so } \operatorname{ord}_{q}(x)+\operatorname{ord}_{q}(g)=e \cdot \operatorname{ord}_{q}(y)+\operatorname{ord}_{q}(h)
$$

But as functions on $S, \operatorname{ord}_{q}(g)=0=\operatorname{ord}_{q}(h)$ and $\operatorname{ord}_{q}(y)=1$, since $y=0$ is not the tangent line. Thus $e=\operatorname{ord}_{q}(x)=e_{q}$.

On the other hand, taking the derivative, we have:

$$
\frac{\partial f}{\partial y}=x \frac{\partial g}{\partial y}+y^{e} \frac{\partial h}{\partial y}+e y^{e-1} h
$$

and the first and second terms both have order $\geq e$ at q. It follows that:

$$
\operatorname{ord}_{q}\left(\frac{\partial f}{\partial y}\right)=\operatorname{ord}_{q}\left(e y^{e-1} h\right)=e-1
$$

Assignment. 3 (1) Read this and please tell me where it is confusing.
(2) Finish the proof by explaining why

$$
\frac{\partial F}{\partial x_{1}}(q) \neq 0
$$

for all points q in the intersection of S with the line at infinity $x_{2}=0$, recalling that this line was assumed to intersect S transversally, so $e_{q}=1$ for all these points.
(3) Celebrate that we now have Riemann surfaces of genus $3,6,10$ etc. as non-singular plane curves of degrees $4,5,6$ etc. in $\mathbb{C P}^{2}$.

Final Remark. In the last assignment, we saw that this genus formula is a consequence of the Riemann-Roch theorem. In fact, we will use it (and an improvement, in the next assignment) to prove the Riemann-Roch theorem!

Side Note. There are other ways to get the genus formula for plane curves (e.g. using the adjunction formula) that you'll see in an algebraic geometry course, (e.g. mine in the Fall). Explaining a proof of this formula is one of my favorite oral exam questions.

