The Genus of a Riemann Surface in the Plane

Let $S \subset \mathbb{CP}^2$ be a plane curve of degree δ . We prove here that:

$$g = \frac{(\delta - 1)(\delta - 2)}{2}$$

We'll start with a version of the:

Bézout Theorem. If $S \subset \mathbb{CP}^n$ has degree δ and G is a homogeneous polynomial of degree d not vanishing identically on S (i.e. $G \notin I_d$), then

$$\deg(\operatorname{div}(G)) = d\delta$$

Proof. The intersection $V(G) \cap S$ is a **finite** set. We choose a linear form l that is non-zero on all the points of $V(G) \cap S$, and then $\phi = G/l^d$ is meromorphic when restricted to S, and $\operatorname{div}(G) - d \cdot \operatorname{div}(l) = \operatorname{div}(\phi)$ has degree zero. But $\operatorname{div}(l)$ has degree δ , by the definition of δ .

Now let $S \subset \mathbb{CP}^2$ be a planar embedding of a Riemann surface, and let $F \in \mathbb{C}[x_0, x_1, x_2]_{\delta}$ generate the ideal I of S and assume, changing coordinates if necessary, that $(0:1:0) \notin S$ and that the line $x_2 = 0$ is *transverse* to S, necessarily meeting S in δ points.

Proof Sketch. Projecting from p = (0:1:0) gives a holomorphic map:

$$\pi: S \to \mathbb{CP}^1$$

(as a map from \mathbb{CP}^2 to \mathbb{CP}^1 , the projection is defined at every point except for p itself). In the open set $U_2 = \{(x_0 : x_1 : x_2) \mid x_2 \neq 0\} = \mathbb{C}^2$ with local coordinates $x = x_0/x_2$ and $y = x_1/x_2$, π is the projection onto the *x*-axis. In these coordinates, the line at infinity is $x_2 = 0$ and maps to $\infty \in \mathbb{CP}^1$ and does not contribute to the ramification of the map π . Then:

- (i) The degree of the map π is δ .
- (ii) The ramification divisor of the map π is:

$$\sum_{p} (e_p - 1) \cdot p = \operatorname{div}\left(\frac{\partial F}{\partial x_1}\right)$$

Keeping in mind that the partial derivative has degree $\delta - 1$, we get:

$$2g - 2 = \delta \cdot (-2) + \sum_{p} (e_p - 1) = -2\delta + \delta \cdot (\delta - 1)$$

from the Riemann-Hurwitz and Bézout Theorems, giving the genus formula.

Let's go into each of these in greater detail.

(o) Projection from p = (0:1:0) is projection to the x-axis.

The lines through p all have equations: $ax_0 + cx_2 = 0$ which, with the exception of the line $x_2 = 0$, all have the form:

$$\frac{x_0}{x_2} = x = -\frac{c}{a}$$

in the local coordinates (x, y). Thus, the fibers of the projection are vertical.

(i) The degree of the map π is δ .

The degree of π is the number of points of the intersection of S with any line through p that intersects S transversely. This number is δ .

(ii) At each point $q = (x_0, y_0) \in S$, we have

$$e_q - 1 = \operatorname{ord}_q\left(\frac{\partial f}{\partial y}\right) = \operatorname{ord}_q\left(\frac{\partial F}{\partial x_1}\right)$$

where $f(x, y) = F(x_0, x_1, x_2)/x_2^{\delta}$ is the polynomial cutting out S in the open set $U_2 = \mathbb{C}^2$. The second equality follows immediately from the chain rule. The first equality is the crux of the matter.

We can assume $q = (0,0) \in S$ by translating the x and y variables without affecting either side of the equation, and then:

$$f(x,y) = ax + by +$$
 higher order, with $ab \neq 0$

and ax + by = 0 is the tangent line to S at q.

Suppose first that $b \neq 0$. Then x = 0 is **not** tangent to S, so $e_q = 1$. On the other hand, $(\partial f/\partial y)(q) = b \neq 0$, and so $\operatorname{ord}_q(\partial f/\partial y) = 0 = e_q - 1$. Check. Now suppose b = 0 (so $a \neq 0$). We collect all terms divisible by x and then factor out the largest power of y in the remaining terms to get:

$$f(x,y) = xg(x,y) + y^e h(x,y)$$
 for some $1 < e \le \delta$

with $g(q) \neq 0$ and $h(q) \neq 0$. Then on S (where $f \equiv 0$), we have:

$$-xg(x,y) = y^e h(x,y)$$
, so $\operatorname{ord}_q(x) + \operatorname{ord}_q(g) = e \cdot \operatorname{ord}_q(y) + \operatorname{ord}_q(h)$

But as functions on S, $\operatorname{ord}_q(g) = 0 = \operatorname{ord}_q(h)$ and $\operatorname{ord}_q(y) = 1$, since y = 0 is not the tangent line. Thus $e = \operatorname{ord}_q(x) = e_q$.

On the other hand, taking the derivative, we have:

$$\frac{\partial f}{\partial y} = x \frac{\partial g}{\partial y} + y^e \frac{\partial h}{\partial y} + e y^{e-1} h$$

and the first and second terms both have order $\geq e$ at q. It follows that:

$$\operatorname{ord}_q\left(\frac{\partial f}{\partial y}\right) = \operatorname{ord}_q(ey^{e-1}h) = e-1$$

Assignment. 3 (1) Read this and please tell me where it is confusing.

(2) Finish the proof by explaining why

$$\frac{\partial F}{\partial x_1}(q) \neq 0$$

for all points q in the intersection of S with the line at infinity $x_2 = 0$, recalling that this line was assumed to intersect S transversally, so $e_q = 1$ for all these points.

(3) Celebrate that we now have Riemann surfaces of genus 3, 6, 10 etc. as non-singular plane curves of degrees 4, 5, 6 etc. in \mathbb{CP}^2 .

Final Remark. In the last assignment, we saw that this genus formula is a consequence of the Riemann-Roch theorem. In fact, we will use it (and an improvement, in the next assignment) to **prove** the Riemann-Roch theorem!

Side Note. There are other ways to get the genus formula for plane curves (e.g. using the *adjunction formula*) that you'll see in an algebraic geometry course, (e.g. mine in the Fall). Explaining a proof of this formula is one of my favorite oral exam questions.