Riemann Surfaces and Graphs

2. Meromorphic Functions and Meromorphic Differentials

Let S be a closed Riemann surface of genus g. Here we explore:

- meromorphic functions $\phi(z)$ (in the local coordinate z) and
- meromorphic differentials $\omega=\psi(z) d z$ (in the local coordinate z)

Definition 2.1. A holomorphic map $f: S \rightarrow T$ of Riemann surfaces is a continuous map with the property that if $f(p)=q$, then in local coordinates z near p and w near $q, w=f(z)$ is a holomorphic function.

Example. A meromorphic function $\phi \in \mathbb{C}(S)$ defines a holomorphic map:

$$
f: S \rightarrow \mathbb{C P}^{1}
$$

sending the poles of S to the point at infinity. In the local coordinate around $0 \in \mathbb{C P}^{1}$, this is the definition of a meromorphic function, and in the local coordinate around $\infty \in \mathbb{C P}^{1}$, this follows from the fact that if ϕ has a pole at p, then $1 / \phi$ is holomorphic at p (with a zero at p).

We can say lot about the "shape" of a holomorphic map of Riemann surfaces. Since every non-constant holomorphic function in a neighborhood of $p \in \mathbb{C}$ has the form:

$$
f(z)-f(p)=(z-p)^{e} g(z) \text { with } g(p) \neq 0
$$

it follows that $f(z)-f(p)$ has an analytic e th root in a neighborhood of p, which we use as a new local coordinate in terms of which $f(z)-f(p)=z^{e}$. For nearby points $q, f(z)-f(q)=z^{e}-(f(q)-f(p))=z^{e}-q^{e}=(z-q) g(z)$ has the value $e=1$. We call the value e the ramification index of $f(z)$ at p and say that $f(z)$ is unramified at p if the ramification index at p is 1 .

Lemma 2.2. The ramification index at $p \in S$ of a non-constant holomorphic $\operatorname{map} f: S \rightarrow T$ of Riemann surfaces is well-defined and the map is surjective and unramified at all but finitely many points.

Proof. The ramification index of a composition $f \circ g$ of holomorphic functions is the product of ramification indices, and therefore an invertible function is unramified. It follows that the ramification index is independent of the choice of local coordinates at p and $f(p)$, and therefore well-defined. Since nearby points to a ramified point are unramified, it follows that there can be no accumulation point of ramified points, and therefore since S is compact, there can only be finitely many of them.

Finally, it follows from the local description that the image of f is open and compact (because f is continuous), hence also closed and since T is assumed to be connected, the map f is surjective.
Definition 2.3. Given $f: S \rightarrow T$, let $R \subset S$ be the finite set of ramification points and $B=f(R) \subset T$ be the finite set of branch points of f.
Lemma 2.4. A non-constant holomorphic map $f: S \rightarrow T$ restricts to a finite covering space over the complement $T-B$ of the branch points.

Proof. Since f is a continuous map of compact spaces, it is proper, from which it follows that the restriction of f to $f^{-1}(T-B)$ is also proper and contains only unramified points. Near an unramified point, f is a locally invertible analytic map, from which it follows that the restriction of f is a covering space. Moreover, by properness of the map it follows that $f^{-1}(q)$ is finite for each $q \in T-B$. Note, however, that f is not, in general, a covering space at all points of $S-R$, since the restriction of a proper map to an open subset of the domain is not, in general, proper!
Definition 2.5. The degree of the map f is the degree of the covering map.
Shape of the Map. Fix a base point $q_{0} \in T-B$. Above q_{0} the covering has d sheets (where d is the topological degree of the map). As one traverses a path in $T-B$ starting at q_{0}, one may track the sheets of the cover. At a ramification point $p \in S$ of index e, there are e sheets that come together. "Winding" once around the branch point $b=f(p)$ permutes the e sheets cyclically. This happens simultaneously at all ramification points lying above b, giving an element of the symmetric group on d sheets with cycle decomposition given by the ramification indices of the points of $f^{-1}(b)$.

Let $\phi \in \mathbb{C}(T)$ be non-constant, and let $p \in S$ be a point of ramification index e for the map f, with $f(p)=q$. In suitable local coordinates z and w near p and q, respectively, we have:

$$
w=z^{e}
$$

So if $\operatorname{ord}_{q}(\phi)=m$, meaning that near $q, \phi(w)=w^{m} g(w)$ with $g(0) \neq 0$, then near $p, \phi \circ f(z)=\left(z^{e}\right)^{m} g\left(z^{e}\right)$, so $\operatorname{ord}_{p}(\phi \circ f)=m e$. Recall that:

$$
\operatorname{div}(\phi)=\sum_{q} \operatorname{ord}_{q}(\phi) \cdot q \in \mathbb{Z}[T]_{0}
$$

is the divisor of zeroes (and poles) of ϕ.

Definition 2.6. $f^{*}: \mathbb{C}(T) \rightarrow \mathbb{C}(S)$ is the pullback map of fields given by:

$$
f^{*}(\phi)=\phi \circ f
$$

Then by the above remark:

$$
(*) \operatorname{div}\left(f^{*} \phi\right)=\sum_{q \in T} \sum_{p \in f^{-1}(q)} e_{p} \cdot \operatorname{ord}_{q}(\phi) \cdot p
$$

Example. Let $\phi \in \mathbb{C}(S)$ and let $f: S \rightarrow \mathbb{C P}^{1}$ be the associated map. Then $f^{*} z=\phi$, and the zeroes of ϕ occur at the points of $f^{-1}(0)$ with multiplicities equal to the ramification indices, while the poles of ϕ occur at the points of $f^{-1}(\infty)$ also with multiplicities equal to the (negatives) of the ramification indices. Since the sum of the ramification indices is equal to the degree of the map f, this gives another proof that the degree of $\operatorname{div}(\phi)$ is zero.

Now let $\omega=\psi(w) d w$ be a meromorphic differential on T.
Definition 2.7. The pull-back on differentials is defined by:

$$
f^{*} \omega=f^{*} \psi(z) d f(z)=\psi(f(z)) f^{\prime}(z) d z
$$

where z is a local coordinate in a neighborhood of p and w is a local coordinate in a neighborhood of q with $w=f(z)$ in local coordinates.
Exercise. Check that this is well-defined. (Hint: Chain rule.)
The Riemann-Hurwitz Formula. Let $\omega=\psi(w) d w$ be a (meromorphic) differential form on T. Then:

$$
\operatorname{div}\left(f^{*} \omega\right)=\operatorname{div}\left(f^{*} \psi\right)+\sum_{p \in R}\left(e_{p}-1\right) \cdot p
$$

In particular, the degree of the differential forms satisfy:

$$
\operatorname{deg}\left(f^{*} \omega\right)=d \cdot \operatorname{deg}(\omega)+\sum_{p \in R}\left(e_{p}-1\right)
$$

Proof. In local coordinates if $w=z^{e}$ and $\psi(w)=w^{m} g(w)$, then

$$
f^{*} \psi(w) d w=\psi\left(z^{e}\right) d z^{e}=\left(z^{e}\right)^{m} g\left(z^{e}\right) e z^{e-1} d z
$$

This gives the first formula! The degree formula follows from $(*)$, which lets us conclude that $\operatorname{deg}\left(f^{*} \psi\right)=d \cdot \operatorname{deg}(\psi)$.

Corollary 2.8. If ω is a differential on S, then $\operatorname{deg}(\omega)=2 g-2$.

Proof. Once the Corollary is true for one differential, it is true for all. Let $\phi \in \mathbb{C}(S)$ be a non-constant meromorphic function and: $f: S \rightarrow \mathbb{C P}^{1}$ the associated map. Recall that:

$$
d z=-\frac{1}{w^{2}} d w
$$

is a meromorphic differential on $\mathbb{C P}^{1}$, of degree -2 . But:

$$
\operatorname{deg}(d \phi)=\operatorname{deg}\left(f^{*} d z\right)=d \cdot \operatorname{deg}(d z)+\sum_{p \in R}\left(e_{p}-1\right)=-2 d+\sum_{p \in R}\left(e_{p}-1\right)
$$

by the degree formula above. On the other hand, let $B \subset \mathbb{C P}^{1}$ be the branch locus of the map f and triangulate $\mathbb{C P}^{1}$ with vertices $B \cup C$ for some additional set C of vertices. Then by Euler's formula for the sphere $\mathbb{C P}^{1}$,

$$
(\# B+\# C)-\# E+\# F=2
$$

if E and F are the edges and faces of the triangulation. This triangulation lifts to a triangulation of S, with d times as many edges and faces, d times as many vertices of C, and vertices of B, except for the fact that e_{p} vertices collapse to one at each ramification point p. Thus,

$$
2 d-\sum_{p}\left(e_{p}-1\right)=2-2 g
$$

by Euler's formula again, which completes the proof.
We will use the following Hodge-theoretic result:
HT1. The holomorphic differentials on S are a g-dimensional vector space.
Note: A differential $\omega=\psi(z) d z$ is holomorphc if $\operatorname{ord}_{p}(\psi) \geq 0$ for all $p \in S$.
Genus One. By HT1, there is one holomorphic differential ω (up to scalar multiples) on S which has no zeroes by Corollary 2.8. Choose a base point $p_{0} \in S$ and, for paths in S starting from p_{0}, integrate the one-form ω along the path. If γ is a loop, then $\int_{\gamma} \omega \in \mathbb{C}$ only depends on the homology class of γ and we get a period map:

$$
\rho: \mathrm{H}_{1}(S, \mathbb{Z}) \rightarrow \mathbb{C} ;[\gamma] \mapsto \int_{\gamma} \omega
$$

a homomorphism of abelian groups, mapping $\mathrm{H}_{1}(S, \mathbb{Z})$ onto a lattice $\Lambda \subset \mathbb{C}$.

This in turn defines the holomorphic Abel-Jacobi map:

$$
a: S \rightarrow \mathbb{C} / \Lambda ; a(p)=\int_{p_{0}}^{p} \omega
$$

which is well-defined since any two paths from p_{0} to p differ by a loop! This map is unramified, with $\omega=a^{*} d z$, and we will see that it is an isomorphism. We may choose generators λ_{1}, λ_{2} for Λ so that:

$$
\operatorname{Im}\left(\lambda_{2} / \lambda_{1}\right)>0
$$

and let P be the fundamental domain; i.e. the parallelogram with vertices $0, \lambda_{1}, \lambda_{1}+\lambda_{2}, \lambda_{2}$ whose boundary ∂P is oriented by \mathbb{C}.

Let $\phi \in \mathbb{C}(S)$ be a non-constant meromorphic function, interpreted as a doubly-periodic function on \mathbb{C}, i.e. $\phi(z+\lambda)=\phi(z)$ for all $\lambda \in \Lambda$. Then if

$$
\phi(z)=c_{-d}(z-a)^{-d}+\cdots+c_{-1}(z-a)^{-1}+c_{0}+\cdots
$$

is the Laurent series expansion near $a \in \mathbb{C}$, let $\operatorname{res}_{a}(\phi)=c_{-1}$ and note:

$$
\frac{1}{2 \pi i} \int_{\partial P} \phi(z) d z=\sum_{a \in P} \operatorname{res}_{a}(\phi)=0
$$

assuming that ϕ has no poles on ∂P. If ϕ does have such poles, then replace P by a translate $P+z_{0}$ to get the same result:
Lemma 2.9. The sum of residues of a meromorphic function on S is zero.
Corollary 2.10. There is no $\phi \in \mathbb{C}(S)$ with a single simple pole.
Remark. There is a more direct way to see Corollary 2.10. Namely, such a meromorphic function would determine a holomorphic map $f: S \rightarrow \mathbb{C P}^{1}$, which is necessarily an isomorphism. But $\mathbb{C P}^{1}$ is a sphere and S is a torus.

Next, starting with an arbitrary $\phi \in \mathbb{C}(S)$, consider the integral:

$$
\frac{1}{2 \pi i} \int_{\partial P} z \cdot \frac{d \phi}{\phi}
$$

On the one hand, by double periodicity this is:
$\frac{1}{2 \pi i}\left(\int_{0}^{\lambda_{2}} \lambda_{1} \frac{d \phi}{\phi}-\int_{0}^{\lambda_{1}} \lambda_{2} \frac{d \phi}{\phi}\right)=m \lambda_{1}-n \lambda_{2}$ for winding numbers $m, n \in \mathbb{Z}$
On the other hand, the residue of the differential at $a \in \mathbb{C}$ is $a \cdot \operatorname{ord}_{a}(\phi)$ from which we conclue:

Lemma 2.11. For each $\phi \in \mathbb{C}(S)$,

$$
\sum_{a \in P} a \cdot \operatorname{ord}_{a}(\phi)=0 \in \mathbb{C} / \Lambda
$$

where this sum is taken in the group law of $S=\mathbb{C} / \Lambda$.
Definition 2.12. The Weierstrass \mathcal{P} function:

$$
\mathcal{P}(z):=\frac{1}{z^{2}}+\sum_{\lambda \in \Lambda-\{0\}}\left(\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right)
$$

defines a doubly-periodic meromorphic function on \mathbb{C} hence a meromorphic function on S with a single pole (of multiplicity two) at $0 \in S$.

Expanding, we get:

$$
\mathcal{P}(z)=z^{-2}+2\left(\sum_{\lambda \neq 0} \frac{1}{\lambda^{3}}\right) z+3\left(\sum_{\lambda \neq 0} \frac{1}{\lambda^{4}}\right) z^{2}+\cdots
$$

but $\mathcal{P}(z)$ is an even function, so we may write:

$$
\begin{aligned}
\mathcal{P}(z) & =z^{-2}+3 G_{2} z^{2}+5 G_{3} z^{4}+\cdots \text { and } \\
\mathcal{P}^{\prime}(z) & =-2 z^{-3}+6 G_{2} z+20 G_{3} z^{3}+\cdots
\end{aligned}
$$

letting

$$
G_{k}=\sum_{\lambda \neq 0} \frac{1}{\lambda^{2 k}}
$$

A little algebra then gives an algebraic relation between \mathcal{P} and \mathcal{P}^{\prime} :

$$
\phi(z):=\mathcal{P}^{\prime}(z)^{2}-4 \mathcal{P}(z)^{3}+60 G_{2} \mathcal{P}(z)+140 G_{3}
$$

is a doubly-periodic holomorphic function with $\phi(0)=0$. So $\phi=0$.
Genus Two Let ω_{1}, ω_{2} be linearly independent holomorphic differentials and consider the meromorphic function ϕ satisfying:

$$
\phi \omega_{1}=\omega_{2}
$$

Since $\operatorname{deg}\left(\omega_{i}\right)=2$, it follows that ϕ has two poles and two zeroes, and:

$$
f: S \rightarrow \mathbb{C P}^{1}
$$

has degree two, with 6 ramification points by the Riemann-Hurwitz formula:

$$
2=2 g-2=\operatorname{deg}\left(\omega_{i}\right)=-2(2)+\sum_{p \in R}\left(e_{p}-1\right)=-4+\# R
$$

