
Riemann Surfaces and Graphs
2. Meromorphic Functions and Meromorphic Differentials

Let S be a closed Riemann surface of genus g. Here we explore:

• meromorphic functions φ(z) (in the local coordinate z) and

• meromorphic differentials ω = ψ(z)dz (in the local coordinate z)

Definition 2.1. A holomorphic map f : S → T of Riemann surfaces is a
continuous map with the property that if f(p) = q, then in local coordinates
z near p and w near q, w = f(z) is a holomorphic function.

Example. A meromorphic function φ ∈ C(S) defines a holomorphic map:

f : S → CP1

sending the poles of S to the point at infinity. In the local coordinate around
0 ∈ CP1, this is the definition of a meromorphic function, and in the local
coordinate around ∞ ∈ CP1, this follows from the fact that if φ has a pole
at p, then 1/φ is holomorphic at p (with a zero at p).

We can say lot about the “shape” of a holomorphic map of Riemann
surfaces. Since every non-constant holomorphic function in a neighborhood
of p ∈ C has the form:

f(z)− f(p) = (z − p)eg(z) with g(p) 6= 0

it follows that f(z)− f(p) has an analytic eth root in a neighborhood of p,
which we use as a new local coordinate in terms of which f(z)− f(p) = ze.
For nearby points q, f(z)−f(q) = ze− (f(q)−f(p)) = ze− qe = (z− q)g(z)
has the value e = 1. We call the value e the ramification index of f(z) at p
and say that f(z) is unramified at p if the ramification index at p is 1.

Lemma 2.2. The ramification index at p ∈ S of a non-constant holomorphic
map f : S → T of Riemann surfaces is well-defined and the map is surjective
and unramified at all but finitely many points.

Proof. The ramification index of a composition f ◦ g of holomorphic
functions is the product of ramification indices, and therefore an invertible
function is unramified. It follows that the ramification index is independent
of the choice of local coordinates at p and f(p), and therefore well-defined.
Since nearby points to a ramified point are unramified, it follows that there
can be no accumulation point of ramified points, and therefore since S is
compact, there can only be finitely many of them.
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Finally, it follows from the local description that the image of f is open
and compact (because f is continuous), hence also closed and since T is
assumed to be connected, the map f is surjective.

Definition 2.3. Given f : S → T , let R ⊂ S be the finite set of ramification
points and B = f(R) ⊂ T be the finite set of branch points of f .

Lemma 2.4. A non-constant holomorphic map f : S → T restricts to a
finite covering space over the complement T −B of the branch points.

Proof. Since f is a continuous map of compact spaces, it is proper, from
which it follows that the restriction of f to f−1(T − B) is also proper and
contains only unramified points. Near an unramified point, f is a locally
invertible analytic map, from which it follows that the restriction of f is a
covering space. Moreover, by properness of the map it follows that f−1(q)
is finite for each q ∈ T − B. Note, however, that f is not, in general, a
covering space at all points of S − R, since the restriction of a proper map
to an open subset of the domain is not, in general, proper!

Definition 2.5. The degree of the map f is the degree of the covering map.

Shape of the Map. Fix a base point q0 ∈ T−B. Above q0 the covering has
d sheets (where d is the topological degree of the map). As one traverses
a path in T − B starting at q0, one may track the sheets of the cover.
At a ramification point p ∈ S of index e, there are e sheets that come
together. “Winding” once around the branch point b = f(p) permutes the
e sheets cyclically. This happens simultaneously at all ramification points
lying above b, giving an element of the symmetric group on d sheets with
cycle decomposition given by the ramification indices of the points of f−1(b).

Let φ ∈ C(T ) be non-constant, and let p ∈ S be a point of ramification
index e for the map f , with f(p) = q. In suitable local coordinates z and w
near p and q, respectively, we have:

w = ze

So if ordq(φ) = m, meaning that near q, φ(w) = wmg(w) with g(0) 6= 0,
then near p, φ ◦ f(z) = (ze)mg(ze), so ordp(φ ◦ f) = me. Recall that:

div(φ) =
∑
q

ordq(φ) · q ∈ Z[T ]0

is the divisor of zeroes (and poles) of φ.
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Definition 2.6. f∗ : C(T )→ C(S) is the pullback map of fields given by:

f∗(φ) = φ ◦ f

Then by the above remark:

(∗) div(f∗φ) =
∑
q∈T

∑
p∈f−1(q)

ep · ordq(φ) · p

Example. Let φ ∈ C(S) and let f : S → CP1 be the associated map. Then
f∗z = φ, and the zeroes of φ occur at the points of f−1(0) with multiplicities
equal to the ramification indices, while the poles of φ occur at the points of
f−1(∞) also with multiplicities equal to the (negatives) of the ramification
indices. Since the sum of the ramification indices is equal to the degree of
the map f , this gives another proof that the degree of div(φ) is zero.

Now let ω = ψ(w)dw be a meromorphic differential on T .

Definition 2.7. The pull-back on differentials is defined by:

f∗ω = f∗ψ(z)df(z) = ψ(f(z))f ′(z)dz

where z is a local coordinate in a neighborhood of p and w is a local coor-
dinate in a neighborhood of q with w = f(z) in local coordinates.

Exercise. Check that this is well-defined. (Hint: Chain rule.)

The Riemann-Hurwitz Formula. Let ω = ψ(w)dw be a (meromorphic)
differential form on T . Then:

div(f∗ω) = div(f∗ψ) +
∑
p∈R

(ep − 1) · p

In particular, the degree of the differential forms satisfy:

deg(f∗ω) = d · deg(ω) +
∑
p∈R

(ep − 1)

Proof. In local coordinates if w = ze and ψ(w) = wmg(w), then

f∗ψ(w)dw = ψ(ze)dze = (ze)mg(ze)eze−1dz

This gives the first formula! The degree formula follows from (∗), which lets
us conclude that deg(f∗ψ) = d · deg(ψ).

Corollary 2.8. If ω is a differential on S, then deg(ω) = 2g − 2.
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Proof. Once the Corollary is true for one differential, it is true for all.
Let φ ∈ C(S) be a non-constant meromorphic function and: f : S → CP1

the associated map. Recall that:

dz = − 1

w2
dw

is a meromorphic differential on CP1, of degree −2. But:

deg(dφ) = deg(f∗dz) = d · deg(dz) +
∑
p∈R

(ep − 1) = −2d+
∑
p∈R

(ep − 1)

by the degree formula above. On the other hand, let B ⊂ CP1 be the
branch locus of the map f and triangulate CP1 with vertices B∪C for some
additional set C of vertices. Then by Euler’s formula for the sphere CP1,

(#B + #C)−#E + #F = 2

if E and F are the edges and faces of the triangulation. This triangulation
lifts to a triangulation of S, with d times as many edges and faces, d times
as many vertices of C, and vertices of B, except for the fact that ep vertices
collapse to one at each ramification point p. Thus,

2d−
∑
p

(ep − 1) = 2− 2g

by Euler’s formula again, which completes the proof.

We will use the following Hodge-theoretic result:

HT1. The holomorphic differentials on S are a g-dimensional vector space.

Note: A differential ω = ψ(z)dz is holomorphc if ordp(ψ) ≥ 0 for all p ∈ S.

Genus One. By HT1, there is one holomorphic differential ω (up to scalar
multiples) on S which has no zeroes by Corollary 2.8. Choose a base point
p0 ∈ S and, for paths in S starting from p0, integrate the one-form ω along
the path. If γ is a loop, then

∫
γ ω ∈ C only depends on the homology class

of γ and we get a period map:

ρ : H1(S,Z)→ C; [γ] 7→
∫
γ
ω

a homomorphism of abelian groups, mapping H1(S,Z) onto a lattice Λ ⊂ C.
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This in turn defines the holomorphic Abel-Jacobi map:

a : S → C/Λ; a(p) =

∫ p

p0

ω

which is well-defined since any two paths from p0 to p differ by a loop! This
map is unramified, with ω = a∗dz, and we will see that it is an isomorphism.
We may choose generators λ1, λ2 for Λ so that:

Im(λ2/λ1) > 0

and let P be the fundamental domain; i.e. the parallelogram with vertices
0, λ1, λ1 + λ2, λ2 whose boundary ∂P is oriented by C.

Let φ ∈ C(S) be a non-constant meromorphic function, interpreted as a
doubly-periodic function on C, i.e. φ(z + λ) = φ(z) for all λ ∈ Λ. Then if

φ(z) = c−d(z − a)−d + · · ·+ c−1(z − a)−1 + c0 + · · ·

is the Laurent series expansion near a ∈ C, let resa(φ) = c−1 and note:

1

2πi

∫
∂P
φ(z)dz =

∑
a∈P

resa(φ) = 0

assuming that φ has no poles on ∂P . If φ does have such poles, then replace
P by a translate P + z0 to get the same result:

Lemma 2.9. The sum of residues of a meromorphic function on S is zero.

Corollary 2.10. There is no φ ∈ C(S) with a single simple pole.

Remark. There is a more direct way to see Corollary 2.10. Namely, such a
meromorphic function would determine a holomorphic map f : S → CP1,
which is necessarily an isomorphism. But CP1 is a sphere and S is a torus.

Next, starting with an arbitrary φ ∈ C(S), consider the integral:

1

2πi

∫
∂P
z · dφ

φ

On the one hand, by double periodicity this is:

1

2πi

(∫ λ2

0
λ1
dφ

φ
−
∫ λ1

0
λ2
dφ

φ

)
= mλ1−nλ2 for winding numbers m,n ∈ Z

On the other hand, the residue of the differential at a ∈ C is a · orda(φ)
from which we conclue:
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Lemma 2.11. For each φ ∈ C(S),∑
a∈P

a · orda(φ) = 0 ∈ C/Λ

where this sum is taken in the group law of S = C/Λ.

Definition 2.12. The Weierstrass P function:

P(z) :=
1

z2
+

∑
λ∈Λ−{0}

(
1

(z − λ)2
− 1

λ2

)
defines a doubly-periodic meromorphic function on C hence a meromorphic
function on S with a single pole (of multiplicity two) at 0 ∈ S.

Expanding, we get:

P(z) = z−2 + 2

∑
λ 6=0

1

λ3

 z + 3

∑
λ 6=0

1

λ4

 z2 + · · ·

but P(z) is an even function, so we may write:

P(z) = z−2 + 3G2z
2 + 5G3z

4 + · · · and

P ′(z) = −2z−3 + 6G2z + 20G3z
3 + · · ·

letting

Gk =
∑
λ 6=0

1

λ2k

A little algebra then gives an algebraic relation between P and P ′:

φ(z) := P ′(z)2 − 4P(z)3 + 60G2P(z) + 140G3

is a doubly-periodic holomorphic function with φ(0) = 0. So φ = 0.

Genus Two Let ω1, ω2 be linearly independent holomorphic differentials
and consider the meromorphic function φ satisfying:

φω1 = ω2

Since deg(ωi) = 2, it follows that φ has two poles and two zeroes, and:

f : S → CP1

has degree two, with 6 ramification points by the Riemann-Hurwitz formula:

2 = 2g − 2 = deg(ωi) = −2(2) +
∑
p∈R

(ep − 1) = −4 + #R
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