Riemann Surfaces and Graphs
2. Meromorphic Functions and Meromorphic Differentials

Let S be a closed Riemann surface of genus g. Here we explore:
e meromorphic functions ¢(z) (in the local coordinate z) and
e meromorphic differentials w = 1 (z)dz (in the local coordinate z)

Definition 2.1. A holomorphic map f : S — T of Riemann surfaces is a
continuous map with the property that if f(p) = ¢, then in local coordinates
z near p and w near ¢, w = f(z) is a holomorphic function.

Example. A meromorphic function ¢ € C(S) defines a holomorphic map:
f:8—CPp!

sending the poles of S to the point at infinity. In the local coordinate around
0 € CP!, this is the definition of a meromorphic function, and in the local
coordinate around oo € CP!, this follows from the fact that if ¢ has a pole
at p, then 1/¢ is holomorphic at p (with a zero at p).

We can say lot about the “shape” of a holomorphic map of Riemann
surfaces. Since every non-constant holomorphic function in a neighborhood
of p € C has the form:

f(2) = f(p) = (2 — p)°g(2) with g(p) # 0

it follows that f(z) — f(p) has an analytic eth root in a neighborhood of p,
which we use as a new local coordinate in terms of which f(z) — f(p) = 2¢.
For nearby points ¢, f(2) — f(q) = 2° = (f(¢) = f(p)) = 2° —¢° = (z = q)g(2)
has the value e = 1. We call the value e the ramification index of f(z) at p
and say that f(z) is unramified at p if the ramification index at p is 1.

Lemma 2.2. The ramification index at p € S of a non-constant holomorphic
map f : S — T of Riemann surfaces is well-defined and the map is surjective
and unramified at all but finitely many points.

Proof. The ramification index of a composition f o g of holomorphic
functions is the product of ramification indices, and therefore an invertible
function is unramified. It follows that the ramification index is independent
of the choice of local coordinates at p and f(p), and therefore well-defined.
Since nearby points to a ramified point are unramified, it follows that there
can be no accumulation point of ramified points, and therefore since S is
compact, there can only be finitely many of them.



Finally, it follows from the local description that the image of f is open
and compact (because f is continuous), hence also closed and since T is
assumed to be connected, the map f is surjective.

Definition 2.3. Given f : S — T, let R C S be the finite set of ramification
points and B = f(R) C T be the finite set of branch points of f.

Lemma 2.4. A non-constant holomorphic map f : S — T restricts to a
finite covering space over the complement T'— B of the branch points.

Proof. Since f is a continuous map of compact spaces, it is proper, from
which it follows that the restriction of f to f~!(T — B) is also proper and
contains only unramified points. Near an unramified point, f is a locally
invertible analytic map, from which it follows that the restriction of f is a
covering space. Moreover, by properness of the map it follows that f~!(q)
is finite for each ¢ € T — B. Note, however, that f is not, in general, a
covering space at all points of S — R, since the restriction of a proper map
to an open subset of the domain is not, in general, proper!

Definition 2.5. The degree of the map f is the degree of the covering map.

Shape of the Map. Fix a base point gy € T'— B. Above gy the covering has
d sheets (where d is the topological degree of the map). As one traverses
a path in T — B starting at ¢g, one may track the sheets of the cover.
At a ramification point p € S of index e, there are e sheets that come
together. “Winding” once around the branch point b = f(p) permutes the
e sheets cyclically. This happens simultaneously at all ramification points
lying above b, giving an element of the symmetric group on d sheets with
cycle decomposition given by the ramification indices of the points of f~1(b).

Let ¢ € C(T') be non-constant, and let p € S be a point of ramification
index e for the map f, with f(p) = ¢. In suitable local coordinates z and w
near p and ¢, respectively, we have:

w ==z

So if ordy(¢) = m, meaning that near ¢, ¢(w) = w™g(w) with ¢g(0) # 0,
then near p, ¢ o f(z) = (2°)™g(2°), so ord,(¢ o f) = me. Recall that:

div(g) =Y ordy(¢) - ¢ € Z[To

is the divisor of zeroes (and poles) of ¢.



Definition 2.6. f*: C(T) — C(S) is the pullback map of fields given by:

[ (@) =¢of

Then by the above remark:

(*) div(f*¢) = Z Z ep - ordgy(

q€T pef~1(q)

Example. Let ¢ € C(S) and let f : S — CP! be the associated map. Then
f*z = ¢, and the zeroes of ¢ occur at the points of f~1(0) with multiplicities
equal to the ramification indices, while the poles of ¢ occur at the points of
f~!(oc0) also with multiplicities equal to the (negatives) of the ramification
indices. Since the sum of the ramification indices is equal to the degree of
the map f, this gives another proof that the degree of div(¢) is zero.

Now let w = ¥(w)dw be a meromorphic differential on 7'

Definition 2.7. The pull-back on differentials is defined by:

fro = frp(2)df (z) = ¥ (f(2)) f'(2)dz

where z is a local coordinate in a neighborhood of p and w is a local coor-
dinate in a neighborhood of ¢ with w = f(z) in local coordinates.

Exercise. Check that this is well-defined. (Hint: Chain rule.)

The Riemann-Hurwitz Formula. Let w = ¢(w)dw be a (meromorphic)
differential form on 7T". Then:

div(f*w) = div(f ) + Y (ep—1)-p

PER

In particular, the degree of the differential forms satisfy:

deg(f*w) = d - deg(w Z

PER

Proof. In local coordinates if w = z¢ and ¥ (w) = w™g(w), then

Frp(w)dw = (2)dz® = (2°)"g(2%)ez"""dz

This gives the first formula! The degree formula follows from (%), which lets
us conclude that deg(f*y) = d - deg(v)).

Corollary 2.8. If w is a differential on S, then deg(w) = 2¢g — 2.



Proof. Once the Corollary is true for one differential, it is true for all.
Let ¢ € C(S) be a non-constant meromorphic function and: f : S — CP!
the associated map. Recall that:

1

dz = —Edw

is a meromorphic differential on CP!, of degree —2. But:

deg(dp) = deg(f*dz) = d - deg(dz) + Z(ep —1)=-2d+ Z(ep —1)
PER pER

by the degree formula above. On the other hand, let B C CP' be the
branch locus of the map f and triangulate CP' with vertices BUC for some
additional set C of vertices. Then by Euler’s formula for the sphere CP!,

(#B + #C) — #E + #F =2

if F and F' are the edges and faces of the triangulation. This triangulation
lifts to a triangulation of S, with d times as many edges and faces, d times
as many vertices of C, and vertices of B, except for the fact that e, vertices
collapse to one at each ramification point p. Thus,

2d - (ep—1)=2-2g
p

by Euler’s formula again, which completes the proof. O
We will use the following Hodge-theoretic result:

HT1. The holomorphic differentials on S are a g-dimensional vector space.

Note: A differential w = 1(z)dz is holomorphc if ord, (1) > 0 for all p € S.

Genus One. By HT1, there is one holomorphic differential w (up to scalar
multiples) on S which has no zeroes by Corollary 2.8. Choose a base point
po € S and, for paths in S starting from pyp, integrate the one-form w along
the path. If v is a loop, then f7 w € C only depends on the homology class
of v and we get a period map:

p:Hi(S,Z) — C; [fy]»—>/w
g

a homomorphism of abelian groups, mapping H;(S,Z) onto a lattice A C C.



This in turn defines the holomorphic Abel-Jacobi map:
P

a:S—C/A; a(p):/ w

Po

which is well-defined since any two paths from pg to p differ by a loop! This
map is unramified, with w = a*dz, and we will see that it is an isomorphism.
We may choose generators A1, Ao for A so that:

Im(AQ/Al) >0

and let P be the fundamental domain; i.e. the parallelogram with vertices
0, A1, A1 + A2, A2 whose boundary dP is oriented by C.

Let ¢ € C(S) be a non-constant meromorphic function, interpreted as a
doubly-periodic function on C, i.e. ¢(z+ ) = ¢(z) for all A € A. Then if

p(z)=caglz—a) 4+ - teq(z—a) et
is the Laurent series expansion near a € C, let res,(¢) = ¢_1 and note:
1
— (2)dz = resy(¢) =0

21t Jop =
assuming that ¢ has no poles on OP. If ¢ does have such poles, then replace
P by a translate P + zp to get the same result:
Lemma 2.9. The sum of residues of a meromorphic function on S is zero.
Corollary 2.10. There is no ¢ € C(S) with a single simple pole.

Remark. There is a more direct way to see Corollary 2.10. Namely, such a
meromorphic function would determine a holomorphic map f : S — CP!,
which is necessarily an isomorphism. But CP! is a sphere and S is a torus.

Next, starting with an arbitrary ¢ € C(S), consider the integral:
1 do
D Z P —
2mi Jop @
On the one hand, by double periodicity this is:
1 ([, d Mod
— </ )\1—¢ — / A2¢> = mA; —nAg for winding numbers m,n € Z
2mi \Jo ¢ 0 ¢

On the other hand, the residue of the differential at a € C is a - ord,(¢)
from which we conclue:



Lemma 2.11. For each ¢ € C(S),

Za -ordy(¢) =0 € C/A

a€P
where this sum is taken in the group law of S = C/A.
Definition 2.12. The Weierstrass P function:

1 1 1
PO=5+ ¥ ()
AeA—{0}

defines a doubly-periodic meromorphic function on C hence a meromorphic
function on S with a single pole (of multiplicity two) at 0 € S.

Expanding, we get:
9 1 1 9
Plz)=2z"+2 ZF z+3 ZF 254
A£0 A0
but P(z) is an even function, so we may write:
P(z) = 272 + 3Gz + 5G32 4+ - -+ and
P(z) = 2273 + 6Gaz + 20G32> + - - -

1
Ge =) ar
AF#0
A little algebra then gives an algebraic relation between P and P’

d(2) :=P'(2)* — 4P(2)* + 60G2P(z) + 140G

letting

is a doubly-periodic holomorphic function with ¢(0) = 0. So ¢ = 0.

Genus Two Let wi,ws be linearly independent holomorphic differentials
and consider the meromorphic function ¢ satisfying:

w1 = wy
Since deg(w;) = 2, it follows that ¢ has two poles and two zeroes, and:
f:8— CP!
has degree two, with 6 ramification points by the Riemann-Hurwitz formula:

2=29—2=deg(w;) = —-2(2)+ Y (e, —1)=—-4+#R
PER



