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Utah/Fall 2020

3. ABSTRACT VARIETIES.

The categories of affine and quasi-affine varieties over k are (by definition) full
subcategories of the category of sheaved spaces (X, Ox) over k. We now enlarge the
category just enough within the category of sheaved spaces to define a category of
abstract varieties analogous to the categories of differentiable or analytic manifolds.
Varieties are Noetherian and locally affine and separated (analogous to Hausdorff),
the latter defined via products, which are also used to define the notion of a proper
(analogous to compact or complete) variety.

Definition 3.1. A topology on a set X is Noetherian if every descending chain:
XOX12Xy2D---
of closed sets eventually stabilizes (or every ascending chain of open sets stabilizes).

Remarks. (a) A Noetherian topological space X is quasi-compact, i.e. every open
cover of X has a finite subcover, but a quasi-compact space need not be Noetherian.

(b) The Zariski topology on a quasi-affine variety is Noetherian.

(¢) It is possible for a topological space X to fail to be Noetherian even if it has
a cover by open sets, each of which is Noetherian with the induced topology. If the
open cover is finite, however, then X is Noetherian.

Definition 3.2. A Noetherian topological space X is reducible if X = X; U X,
for closed sets X7, Xo properly contained in X. Otherwise it is irreducible.

Remarks. (a) As we saw in §1, every Noetherian topological space X is a finite
union of irreducible closed subsets, accounting for the irreducible components of X.

(b) The underlying topological space of a quasi-affine variety is irreducible.
Definition 3.3. A sheaved space (X, Ox) over k is a prevariety if:
e X is an irreducible Noetherian topological space, and

e (X,0x) is locally affine, i.e. there is a (finite) open cover X =U; U---UU,
such that each sheaved space (U;, Ox|y,) is an affine variety over k.

Example. There are two ways to add a point to A} to enlarge it as a prevariety.

(The Projective Line) We may glue two copies of A}, along the common open set
A} — {0} C A} via the isomorphism y = z7! of associated k-algebras:

k[z,2™'] and k[y,y ']
This allows us to define the prevariety:
P = A UAL/(z7) ~y)
(The Doubled Origin) When one applies instead the identity y = x above, to glue:
AR UAL/(z ~y)
along the common open subset A! —{0}, the result is the affine line with two origins.

To define a variety we need to explore the categorical definition of a product.
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Definition 3.4. A categorical product of objects X, Y of a category C is a triple:
(X xY,mx : X xY > X1y : X XY =Y)

consisting of an object X xY and “projection” morphisms to X and Y respectively.
The triple is required to be universal in the sense that all other such triples

(Zp:Z—-X,q:Z—=Y)

are obtained via a unique morphism Z = X x Y with p = 7x ou and 7y = g o .
Note. The product (when it exists) is unique up to a unique isomorphism.
Examples. (a) The Cartesian product is the product in the category of sets.

(b) The intersection is the product in the category of subsets of a fixed set U.
Proposition 3.6. Products exist in the category of affine varieties over k.

Proof. Every pair of commutative k-algebras with 1 has the tensor product:

ARy Bwitha:A—A®yBand 8: B — A®, B

which is a coproduct with the arrow-reversed universal property. To apply the
functor maxspec and obtain a product of affine varieties, we need to show:

(a) If A and B are finitely generated k-algebras, then A®y, B is finitely generated.
(b) If A and B are integral domains, then A ®; B is an integral domain.
Given generators A = k[z1, ..., 2]/ {f1, ..., fm) and B = k[y1, ..., Y4l /{91, -, gp) then
ARk B=Fk[X1, ey Ty Y1y s Yg) /{f1s ooy s G155 Gp)
so A ® B is finitely generated. Moreover, the algebraic set:
X XY =X(f1, s fnr g1, s Gp) C k"1
is the Cartesian product of X C k™ and Y C k2. To prove (b), we will show:
(i) X x Y is an irreducible algebraic subset of k"9 so k[X x Y] is a domain.
(ii) A ® B has no nilpotent elements (other than zero).
Suppose X XY = Z; U Z5 is a union of closed subsets. Then for all y € Y,
(Z1 N (X x {y}) U (ZaN (X x {y}) = X x {y} C k"9, which is irreducible

so for each y € Y, either Z1 N (X x {y}) = X x {y} or ZoN(X x {y}) = X x {y}.
Now let:

Vi={yeVY|[Zn(Xx{yh)} =X x{y}
Each 7y : {#} x Y — Y is an isomorphism, so the ¥; = Ngexmy ({z} xY N Z;)
are closed sets in Y, and YUY, =Y, so Y; =Y for some ¢ and then Z; = X x Y.
So X x Y is irreducible.

It follows from the Nullstellensatz that rad({(f1, ..., fn, g1, -, gm)) = (X XY ) isa
prime ideal, so the proof is finished if we show (ii). Suppose ) ¢;;ja;®b; € ARy B is
nilpotent and that {a;(z)} and {b;(y)} are linearly independent in A and B. Then

0= Zcijai(x)bj(y) € k[X x Y] (evaluating at the points of X x Y)

and so for each yo € Y, we have > ¢;;a,(x)b;(yo) = 0. By the linear independence
of the a;(x), we get > ¢;;b,(y) = 0 for all y € Y and then by the linear independence
of the b;(y), we have ¢;; = 0 for all ¢ and j. O



Note. (a) The condition k = k is necessary for (b) above. For example,
Cor C=Rz,yl(z® + 1,4° + 1) = Cly]/(y* + 1)
is not a domain, since y? + 1 = (y —i)(y + i) factors in Cly].
(b) The proof of Proposition 3.6 is a curious blend of geometry and algebra.

Proposition 3.7. The product in Proposition 3.6 is also the product of the affine
varieties in the category of prevarieties.

Proof. The universal property requires more argument in this larger category.
Namely, if (Z,p : Z — maxspec(A), q : Z — maxspec(B)) is a triple in the category
of prevarieties, we need to find the (unique) lift

u: Z — maxspec(A ® B) to the product affine variety
Let U; = maxspec(C;) be an affine open cover of Z. Then we lift:
U; C Z — maxspec(A) and U; C Z — maxspec(B) to u; : U; — maxspec(A Q B)

using Proposition 3.6. It remains to show that these morphisms patch, i.e. that:

Uz“UmUj = Uj|U;nU;

But if z € U; N Uj, then the two k-algebra homomorphisms to the stalk O .:
ARy B—C; = 0z, =(Ci)m, and A®, B— C; = Oz, = (C))m.
coincide, by the universal property of the tensor product, so u;(z) = u;(z). O

This is the foundation for the following:
Proposition 3.8. Products of prevarieties exist in the category of prevarieties.

Proof. Let (X,0x) and (Y, Oy) be prevarieties. Then the Cartesian product
X xY is the underlying set of the product (though not with the product topology!).
ItUy,..,U, C X and V4,...,V,, CY are open covers by affine varieties, then:

U; x Vj cover X XY as a set

The realizations of U; x V; as affine varieties (topology and sheaf of functions)
uniquely patch together to define on X X Y a topology and sheaf of functions for
which the inclusions U; x V; C X xY are open immersions of sheaved spaces. This is
done with a lot of appeals to the uniqueness of lifts in the universal property. [17!

Important Remark. Products in the category of topological spaces are Cartesian
products of sets with the product topology. There is no contradiction in the fact
that in the category of prevarieties, the topology on the product fails to be the
product topology, as is seen in the very first example:

AL x AL — A2

in which the diagonal X (z — y) in A? is a closed subset of the affine plane, but is
not closed in the product of the cofinite topologies on the set A} x Aj.

Let C be a category of topological spaces (with additional structure) in which
products exist and the underlying set of the product is the Cartesian product.

Definition 3.9. For each object X, the diagonal § : X — X x X is the lift of:
p=1lx: X —=-Xandg=1x: X = X
and X is separated if the image of § is a closed subset of X x X.



Example. In the category of topological spaces, X is separated if and only if X is
Hausdorft, i.e. pairs of points z,y € X are contained in disjoint neighborhoods.

Proof. In the category of topological spaces products have the product topology,
meaning that the products U x V of open sets U C X and V' C Y are a basis for the
topology on X x Y. Then 6(X) C X x X is closed if and only if each (z,y) &€ 6(X)
is contained in a product open set U, x U, not intersecting the diagonal, if and only
if x € U, and y € Uy are contained in disjoint neighborhoods for all x # y. O

Proposition 3.10. X is separated in a category with products if and only if
{yeY | ply) =q(y)} CY is closed for every Y and pair p,q: Y — X
Proof. Each pair of morphisms p,q:Y — X lifts to:
(,g):Y = X x X and {y €Y | p(y) = q(y)} = (p,a)~'6(X)
so if §(X) is closed, then so too are all the sets {y € Y | p(y) = q(v)}.
Conversely, 6(X) itself is {(z1,22) € X X X | mi (21, 22) = ma(x1, z2)}. O
Example. The doubled origin in A}c is not separated. The two open inclusions:
i, Ap C AL Upey A
agree on the subset U, C Ak, which is not closed. In contrast, the open inclusions
ij AL CAL Uiy Ap =P

=y, ie. y =21, which is closed. We will see P}. is separated in §4.

agree at y—
Definition 3.11. A separated prevariety over k is called a variety.
Affine varieties are varieties. If A = k[z1,...,2,]/P for P = (f1, ..., fm), then
maxspec(A) = X = X(P) C A}
and we’ve seen that:
maxspec(A ®; A) = X x X C A"
where AQr A = k21, ..., Tny Y1y ooy Yn) [ {J1(2), ooy frn (@), 1Y), oo, fn(y)). But then:
§(X)=X(I) C X x X for the ideal I = (x1 — y1,...., Tp, — Yn)

Quasi-affine varieties are varieties. If (X,Ox) is a variety and j : U — X is
an open subset, then (U, Oy ) is a variety, applying Proposition 3.10 to:

0(U) ={(ur,uz) € U x U | jom(ur,us) = joma(us,uz)}
for the two morphisms jom; : U x U — X.

Definition 3.12. A separated object X of a category of topological spaces with
Cartesian products is proper if the projections:

T X XY =Y
are closed maps for all objects Y of the category.

Remarks. (i) Every morphism f : X — Y from a proper object to a separated
object is a closed map since f(Z) = ma(r; ' (Z)NT) where ' C X x Y is the graph.
The graph of a morphism is closed when Y is separated, since it is the inverse image
of the diagonal under the map:

(f,idy): X xY =Y xY



(ii) The prevarieties over k are irreducible topological spaces X, so in particular
a variety X is not proper if it is an open subset of another variety Y, since the
inclusion ¢ : X — Y is not a closed map. For this reason, we call proper varieties
complete; there is no way to enlarge them as varieties by adding points. When we
pass from affine varieties to their projective closures in §4, we will be “completing”
the affine variety in this sense. It is important to keep in mind, however, that in
general the completion of a given affine variety is not unique. The first example of
a completion is the inclusion A} C IP’}C.

Example. In the category of topological spaces, proper coincides with compact.
Proposition 3.13. The only proper affine variety over k is the point maxspec(k).
Proof. Let € X and choose a non-constant f € k[X], which we regard as:
f:X — k= A} = maxspec(k[y])

The image f(X) is dense in A} (Exercise 2.6), since f* : k[y] — k[X] is injective.
Then the hyperbola over Uy is the closed subset
X(fy—1)C X x A}
projecting onto a dense subset of A} — {0}, which is not closed in A}. (]

Remark. If f is not surjective, then f is not a closed map and it is immediate that
X is not proper. But even when f is surjective (e.g. f: A} — A} is the identity),
then image of the projection of the hyperbola is not closed.

Assignment 3.

1. (a) Find the ring Ox(X) of regular functions on the projective line X = P;.
(b) Do the same for the doubled affine line.

2. Glue two copies of A7 to get a variety that is neither quasi-affine nor proper.

Hint: The ring of regular functions will be the key.

3. Prove that the intersection of two open affine subsets of a variety X is affine.
(An open subset U C X is affine if the variety (U, Op) is an affine variety).

Hint: Given U,V C X, realize U NV as a closed subset of the affine variety U x V.
Closed irreducible subsets of an affine variety are affine varieties!

Problem 3 is very significant! It implies that any open affine cover of a variety has
the property that all (multiple) intersections of open subsets in the cover are affine.

4. Show with an example that separatedness is necessary in Problem 3.

5. Prove that compact spaces are proper in the category of topological spaces.



