Algebraic Geometry I (Math 6130)

Utah/Fall 2020

4. Projective Varieties.

A projective variety over k is obtained from a \mathbb{Z}-graded k-algebra domain A_{\bullet} (via the functor maxproj) analogously to the realization of an affine variety from an k-algebra (ungraded) domain A (via the functor maxspec). The key difference is that unlike the affine case, in which the domain is recovered from the regular functions, the only regular functions on a projective variety are the constants.
Definition 4.1. As a set, projective space \mathbb{P}_{k}^{n} is the locus of lines through $0 \in k^{n+1}$.
Definition 4.2. The polynomial ring graded by degree:

$$
\begin{gathered}
S_{\bullet}=\bigoplus_{d=0}^{\infty} k\left[x_{0}, \ldots, x_{n}\right]_{d} \text { is defined by } \\
S_{d}=\left\{\sum_{|I|=d} c_{I} x_{I} \mid x_{I}=x_{0}^{i_{0}} \cdots x_{n}^{i_{n}}, c_{I} \in k\right\}
\end{gathered}
$$

i.e. S_{d} is the vector space of homogeneous polynomials of degree d, with:

$$
S_{d} \cdot S_{e} \subset S_{d+e}
$$

Definition 4.3. An ideal $I \subset S_{\bullet}$ is homogeneous if:

$$
I=\bigoplus_{d=0}^{\infty} I \cap k\left[x_{0}, \ldots, x_{n}\right]_{d}, \text { and in that case we let } I_{d}=I \cap k\left[x_{0}, \ldots, x_{n}\right]_{d}
$$

i.e. I is generated by (finitely many!) homogeneous polynomials, so that

$$
f=f_{0}+\cdots+f_{d} \in I \Leftrightarrow f_{e} \in I_{e} \text { for all } e
$$

The quotient by a homogeneous ideal is a graded ring:

$$
S_{\bullet} / I=A_{\bullet} \text { with } A_{d}=S_{d} / I_{d} \text { and } A_{d} \cdot A_{e} \subset A_{d+e}
$$

Example. (a) The irrelevant homogeneous maximal ideal in S_{\bullet} is:

$$
S_{+}=\bigoplus_{d=1}^{\infty} k\left[x_{0}, \ldots, x_{n}\right]_{d}=\left\langle x_{0}, \ldots, x_{n}\right\rangle
$$

This ideal contains all homogeneous ideals in S_{\bullet} other than the ideal $\langle 1\rangle$.
(b) If $X \subset \mathbb{P}_{k}^{n}$, then the affine cone over X is:

$$
C(X)=\left\{\left(a_{0}, \ldots, a_{n}\right) \in k^{n+1} \mid k \cdot\left(a_{0}, \ldots, a_{n}\right) \in X\right\} \cup\{(0, \ldots, 0)\}
$$

The ideal $I(X):=I(C(X)) \subset S_{\bullet}$ is a homogeneous ideal (if k is infinite), and:

$$
k[X]_{\bullet}=k\left[x_{0}, \ldots, x_{n}\right]_{\bullet} / I \text { is the quotient ring }
$$

(with this convention, $I(\emptyset)=S_{+}$, though one could argue for $I(\emptyset)=\langle 1\rangle$)
(c) For a homogeneous ideal $I \subset S_{+}$,

$$
X(I)=C(X) \subset k^{n+1} \text { is an affine cone over some } X \subset \mathbb{P}_{k}^{n}
$$

and we let $X:=X(I) \subset \mathbb{P}_{k}^{n}$ be the associated algebraic subset of \mathbb{P}_{k}^{n}.
This sets up a version of the Nullstellensatz for radical homogeneous ideals:

The Projective Nullstellensatz. The radical homogeneous ideals $I \subset S_{+}$are in bijection with the algebraic subsets $X=X(I) \subset \mathbb{P}_{k}^{n}$ via the mappings X and I, with the prime ideals corresponding to irreducible algebraic sets and the maximal prime ideals properly contained in S_{+}corresponding to the points $x \in \mathbb{P}_{k}^{n}$ via:

$$
m_{x}=\left\langle a_{j} x_{i}-a_{i} x_{j}\right\rangle \text { for } x=k \cdot\left(a_{0}, \ldots, a_{n}\right)
$$

Proof. This follows from the ordinary Nullstellensatz applied to affine cones and the fact that $\operatorname{rad}(I)$ is a homogeneous ideal when I is a homogeneous ideal.
Projective Coordinates. We will write $x \in \mathbb{P}_{k}^{n}$ in coordinates as the ratio:

$$
\left(a_{0}: \cdots: a_{n}\right)
$$

with the understanding that $\left(a_{0}: \cdots: a_{n}\right)=\left(\lambda a_{0}: \cdots: \lambda a_{n}\right)$ for $\lambda \in k^{*}$.
Remark. If $F \in S_{d}$ is homogeneous of degree d, then:

$$
F\left(\lambda a_{0}: \ldots: \lambda a_{n}\right)=\lambda^{d} F\left(a_{0}: \cdots: a_{n}\right)
$$

so although the value $F(x)$ is not well-defined, it does make sense to say $F(x)=0$. When F is not homogeneous, even this statement is not well-defined.
Example. In the projective space $\mathbb{P}_{k}^{n^{2}-1}$ of $n \times n$ matrices,

$$
X(\Delta) \text { is the locus (hypersurface) of singular matrices }
$$

where $\Delta \in S_{n}$ is the determinant polynomial. The complement is $\operatorname{PGL}(n, k)$.
The following Lemma is useful.
Lemma 4.4. For a homogeneous ideal $I \subset S_{\bullet}$,

$$
X(I)=\emptyset \Leftrightarrow S_{+} \subseteq \operatorname{rad}(I) \Leftrightarrow S_{d} \subset X(I) \text { for some } d
$$

Proof. The first equivalence is immediate, and if $S_{+} \subseteq \operatorname{rad}(I)$, then

$$
x_{i}^{d_{i}} \in I \text { for some } d_{0}, \ldots, d_{n}
$$

and then $S_{d} \subset I$ for $d>\left(d_{0}+\cdots+d_{n}\right)-n$. The converse is clear.
We now enlarge our stable of \mathbb{Z}-graded k-algebra domains to include:

$$
k[X]_{\bullet}=S_{\bullet} / P \text { for homogeneous prime ideals } P \subset S_{+}
$$

the homogeneous coordinate rings of irreducible subsets of \mathbb{P}_{k}^{n}. These rings are:

- \mathbb{Z}-graded k-algebra integral domains, with $k[X]_{0}=k$
- finitely generated in degree one by a basis x_{1}, \ldots, x_{n} of $k[X]_{1}$.

We now construct a prevariety $\left(X, \mathcal{O}_{X}\right)$ out of each such graded k-algebra A_{\bullet}.
The Set X is the collection of maximal prime ideals $m_{x} \subset A_{+}$.
The Topology is the Zariski topology, in which the algebraic sets:

$$
X(I)=\left\{m_{x} \mid I \subset m_{x}\right\}
$$

are the closed sets, for (radical) homogeneous ideals $I \subset A_{+}$.
The Field of Rational Functions is:

$$
k(X)=\left\{\left.\frac{F}{G} \right\rvert\, F, G \in A_{d} \text { and } G \neq 0\right\} \subset k(A)
$$

This is a subfield of $k(A)$. The elements of $k(X)$ are homogeneous of degree zero, which makes them (rational) functions on X.

Concretely, a choice of basis x_{0}, \ldots, x_{n} of A_{1} identifies $A_{\bullet}=k\left[x_{0}, \ldots, x_{n}\right] / P$ and:

$$
\operatorname{maxproj}\left(A_{\bullet}\right)=X=X(P) \subset \mathbb{P}_{k}^{n}
$$

This is an irreducible Zariski topological space by the Projective Nullstellensatz. For $x=\left(a_{0}: \ldots: a_{n}\right) \in X$, and $\phi \in k(X)$,

$$
\phi\left(a_{0}, \ldots, a_{n}\right)=\frac{F\left(a_{0}, \ldots, a_{n}\right)}{G\left(a_{0}, \ldots, a_{n}\right)}=\frac{\lambda^{d} F\left(a_{0}, \ldots, a_{n}\right)}{\lambda^{d} G\left(a_{0}, \ldots, a_{n}\right)}=\phi\left(\lambda a_{0}, \ldots ., \lambda a_{n}\right)
$$

is well-defined, provided that $G\left(a_{0}, \ldots, a_{n}\right) \neq 0$. More abstractly,
Definition 4.5. A rational function $\phi \in k(X)$ is regular at $x \in X$ if

$$
\phi=\frac{F}{G} \text { with } G \notin m_{x}
$$

The rational functions that are regular at $x \in X$ are elements of $A_{\left(m_{x}\right)} \subset k(X)$, a local ring with residue field k, in which the value $\phi(x)$ is taken. The assignment:

$$
\mathcal{O}_{X}(U)=\{\phi \in k(X) \mid \phi \text { is regular at all points of } U\}
$$

defines the sheaf \mathcal{O}_{X} and the sheaved (Noetherian, irreducible) space maxproj$\left(A_{\bullet}\right)$.
In contrast to Proposition 2.7, we have:
Proposition 4.6. $\mathcal{O}_{X}(X)=k$ when $\left(X, \mathcal{O}_{X}\right)=\operatorname{maxproj}\left(A_{\bullet}\right)$.
Proof. Let $\phi \in \mathcal{O}_{X}(X)$ and let $I=\left\langle G \in A_{d} \mid G \phi \in A_{d}\right\rangle$ be the homogeneous ideal of denominators of I. By assumption $X(I)$ is empty, and if we could conclude (as in the affine case) that $1 \in I$, we'd have $\phi \in A_{0}=k$. Instead, we have:

$$
A_{d} \subset I \text { for some } d \text { (Lemma 4.4) }
$$

In other words, $G \phi \in A_{d}$ for all $G \in A_{d}$. This has the odd consequence that:

$$
G \phi^{2}=(G \phi) \phi \in A_{d}, G \phi^{3}=\left(G \phi^{2}\right) \phi \in A_{d}, \text { etc }
$$

which gives an increasing chain of submodules:

$$
A_{\bullet} \subset A_{\bullet}+\phi A_{\bullet} \subset A_{\bullet}+\phi A_{\bullet}+\phi^{2} A_{\bullet} \subset \cdots \subset G^{-1} A_{\bullet}
$$

of a principal graded A-module. Since A_{\bullet} is Noetherian, the chain stabilizes, and:

$$
\phi^{n}=f_{0}+f_{1} \phi+\cdots+f_{n-1} \phi^{n-1} \text { for elements } f_{i} \in A \bullet
$$

In degree 0 , this is an identity $\phi^{n}=c_{0}+c_{1} \phi+\cdots+c_{n-1} \phi^{n-1}$ with coefficients in $k=A_{0}$, and then since $k=\bar{k}$, it follows that $\phi \in k$, as desired.

So X isn't affine (unless it is a point). But it is covered by affine varieties:
Proposition 4.7. Each sheaved space $\left(X, \mathcal{O}_{X}\right)=\operatorname{maxproj}\left(A_{\bullet}\right)$ is a prevariety.
Proof. Let $G \in A_{d}$ be a non-zero element of positive degree d. Then

$$
A_{(G)}=\left\{\left.\frac{F}{G^{m}} \right\rvert\, \operatorname{deg}(F)=m d\right\} \subset k(X)
$$

is a k-algebra domain, generated by y_{i} / G, where y_{i} are a basis for A_{d}. Moreover,

$$
k\left(A_{(G)}\right)=k(X)
$$

and $\left(U_{G},\left.\mathcal{O}_{X}\right|_{U_{G}}\right)$ is isomorphic to maxspec $\left(A_{(G)}\right)$, where $U_{G}=X-X(G)$. In this case, we can conclude that G^{m} is in the ideal of denominators of each $\phi \in \mathcal{O}_{X}\left(U_{G}\right)$ by the Projective Nullstellensatz, as in Proposition 2.7.

Example. The open cover of \mathbb{P}_{k}^{n} by $n+1$ affine spaces U_{0}, \ldots, U_{n}.
For each of the coordinate functions $x_{0}, \ldots, x_{n} \in k\left[x_{0}, \ldots, x_{n}\right]_{1}$,

$$
U_{x_{i}}=\operatorname{maxspec}\left(k\left[x_{0}, \ldots, x_{n}\right]_{\left(x_{i}\right)}\right)=\operatorname{maxspec}\left(k\left[\frac{x_{0}}{x_{i}}, \ldots ., \frac{x_{n}}{x_{i}}\right]\right)
$$

is the affine n space of points:

$$
U_{x_{i}}=\left\{\left(a_{0}: \ldots: a_{n}\right) \mid a_{i} \neq 0\right\}=\left\{\left(\frac{a_{0}}{a_{i}}, \ldots ., 1, \ldots ., \frac{a_{n}}{a_{i}}\right)\right\}
$$

Notice in passing that, $\operatorname{PGL}(n, k)=U_{\Delta}$ is an affine variety, by this Proposition.
A morphism from a prevariety X to affine space \mathbb{A}_{k}^{n} is given by regular functions:

$$
g_{1}=f^{*}\left(x_{1}\right), \ldots, g_{n}=f^{*}\left(x_{n}\right) \in \mathcal{O}_{X}(X)
$$

via $f(x)=\left(g_{1}(x), \ldots, g_{n}(x)\right)$. In particular, the only morphisms from a projective prevariety (or any prevariety with $\mathcal{O}_{X}(X)=k$) to \mathbb{A}_{k}^{n} are the constant maps.

But what about morphisms from X to \mathbb{P}_{k}^{n} ? Is there a way to characterize these? The key is rational functions. Each prevariety X has its rational function field:

$$
k(X)=\lim _{\rightarrow} \mathcal{O}_{X}(U)
$$

When $X=\operatorname{maxspec}(A)$ this is $k(A)$ and when $X=\operatorname{maxproj}\left(A_{\bullet}\right)$, it is $k(X)$. Moreover, if $U \subset X$ is any open subset, then $k(U)=k(X)$.
Definition 4.8. Rational functions $\phi_{0}, \ldots, \phi_{n} \in k(X)$ determine a rational map:

$$
f: X-->\mathbb{P}_{k}^{n} ; f(x)=\left(\phi_{0}(x): \cdots: \phi_{n}(x)\right)
$$

The domain of the rational map f is larger than one might expect, since:

$$
\left(\phi_{0}, \ldots, \phi_{n}\right) \text { and }\left(\phi \cdot \phi_{0}, \ldots, \phi \cdot \phi_{n}\right)
$$

determine the same rational map to \mathbb{P}_{k}^{n} whenever $\phi \in k(X)^{*}$. This means that one may be able to expand the domain not just by different forms of $\phi_{i}=F_{i} / G_{i}$, but also by multiplying by convenient rational functions ϕ.
Example. (a) The rational projection map $\pi: \mathbb{P}_{k}^{2}-->\mathbb{P}_{k}^{1}$ given by:

$$
\left(\frac{x_{1}}{x_{0}}: \frac{x_{2}}{x_{0}}\right)=\left(1: \frac{x_{2}}{x_{1}}\right)=\left(\frac{x_{1}}{x_{2}}: 1\right)
$$

is well-defined on the open set $\mathbb{P}_{k}^{2}-\{(1: 0: 0)\}$ but it cannot be extended further. When restricted to the projective line $X\left(x_{1}\right) \subset \mathbb{P}_{k}^{2}$, we get $\pi\left(a_{0}: 0: a_{1}\right)=(0: 1)$ and when restricted to $X\left(x_{2}\right)$, we get $\pi\left(a_{0}: a_{1}: 0\right)=(0: 1)$, so there is no way to give a value to $\pi(1: 0: 0)$ to extend π to a continuous map. In fact, when restricted to each line through ($1: 0: 0$), the projection map is a different constant.
(b) When π is restricted to the conic $C=X\left(x_{1}^{2}-x_{0} x_{2}\right) \subset \mathbb{P}_{k}^{2}$, however:

$$
\left.\pi\right|_{C}=\left(1: \frac{x_{2}}{x_{1}}\right)=\left(\frac{x_{1}}{x_{2}}: 1\right)=\left(1: \frac{x_{1}}{x_{0}}\right)
$$

with the last form of the map coming from the identity $x_{2} / x_{1}=x_{1} / x_{0}$ in $k(C)$. Moreover, this rational map, defined everywhere, inverts $i: \mathbb{P}_{k}^{1} \rightarrow C$ given by:

$$
i=\left(1: \frac{x_{1}}{x_{0}}:\left(\frac{x_{1}}{x_{0}}\right)^{2}\right)=\left(\left(\frac{x_{0}}{x_{1}}\right)^{2}: \frac{x_{0}}{x_{1}}: 1\right)
$$

Proposition 4.9. A morphism $f:\left(X, \mathcal{O}_{X}\right) \rightarrow \mathbb{P}_{k}^{n}$ in the category of sheaved spaces is the same as a rational map that is defined at all points of X.

Proof. We use the open cover of \mathbb{P}_{k}^{n} by affine spaces in the Example above. Specifying a morphism $f: X \rightarrow \mathbb{P}_{k}^{n}$ is the same as specifying morphisms:

$$
f_{i}: W_{i} \rightarrow U_{i}=\mathbb{A}_{k}^{n} \text { for an open cover } W_{i} \subset X
$$

with the property that $f_{i}=f_{j}$ as maps from $W_{i} \cap W_{j}$ to \mathbb{P}_{k}^{n}. Focusing on one i,

$$
f_{i}^{*}\left(\frac{x_{j}}{x_{i}}\right)=\phi_{i} \in \mathcal{O}_{W_{i}}\left(W_{i}\right) \subset k(X)
$$

gives the set $\left(\phi_{0}, \ldots, \phi_{n}\right)$ with $\phi_{i}=1$ exhibiting f as a rational map. The agreement on the overlap corresponds to replacing each ϕ_{i} by $\phi \cdot \phi_{i}$ for $\phi=f_{j}^{*}\left(\frac{x_{i}}{x_{j}}\right)$
Corollary 4.10. \mathbb{P}_{k}^{1} and C from Example (b) above are isomorphic prevarieties.
On the other hand, these two projective prevarieties come from the graded rings:

$$
A_{\bullet}=k\left[x_{0}, x_{1}\right] \bullet \text { and } A_{2 \bullet}=k\left[x_{0}^{2}, x_{0} x_{1}, x_{2}^{2}\right] \bullet
$$

Exercise. maxproj $\left(A_{\bullet}\right)$ and maxproj $\left(A_{d \bullet}\right)$ are isomorphic prevarieties for all $d>0$.
Proposition 4.11. Products of projective prevarieties are projective.
Proof. It suffices to prove that $\mathbb{P}_{k}^{n} \times \mathbb{P}_{k}^{m}$ is a projective prevariety, i.e. to locate this prevariety as a closed, irreducible subset of some \mathbb{P}_{k}^{r}. Here it is:

$$
X=\{\text { rank one } m \times n \text { matrices }\} \subset \mathbb{P}_{k}^{(n+1)(m+1)-1}
$$

with projective coordinates $\left(a_{i j}\right)$ for $i=0, \ldots, n$ and $j=0, \ldots, m$ and

$$
X=X\left(x_{i j} x_{k l}-x_{i l} x_{j k}\right)(\text { the vanishing of the two by two minors })
$$

Then X is set-theoretically equal to $\mathbb{P}_{k}^{n} \times \mathbb{P}_{k}^{m}$ via the Segre embedding

$$
\left(\left(a_{0}: \ldots: a_{n}\right),\left(b_{0}: \ldots: b_{m}\right)\right) \mapsto\left(a_{i} b_{j}\right)
$$

and the Cartesian projections are realized by restricting the rational projections:

$$
\pi_{\mathbb{P}_{k}^{n}}=\left(x_{10} / x_{i j}: x_{20} / x_{i j}: \ldots: x_{n 0} / x_{i j}\right) \text { and } \pi_{\mathbb{P}_{k}^{m}}=\left(x_{01} / x_{i j}: \cdots: x_{0 m} / x_{i j}\right)
$$

to X (for any choice of $x_{i j}$), where they are defined everywhere, hence morphisms. On each of the open affines $U_{i} \times U_{j}=\mathbb{A}_{k}^{n} \times \mathbb{A}_{k}^{m}$, this agrees with the product of affine varieties, and so $\left(X, \pi_{\mathbb{P}^{n}}, \pi_{\mathbb{P}_{k}^{m}}\right)$ is the universal triple.
Corollary 4.12. Projective prevarieties are varieties.
Proof. The diagonal in $\mathbb{P}_{k}^{n} \times \mathbb{P}_{k}^{n}$ is the closed subset $X\left(\left\{x_{i j}-x_{j i}\right\}\right) \subset X$.
It follows that quasi-projective prevarieties $U \subset \operatorname{maxproj}\left(A_{\bullet}\right)$ are also varieties.
This choice of an arbitrary $x_{i j}$ in the proof of Proposition 4.11 points to a useful way to think about morphisms from a projective variety X to \mathbb{P}_{k}^{n}. If $\phi_{0}, \ldots, \phi_{n}$ are rational functions defining a morphism ϕ, then we may choose $G \in A_{d}$ for some (large) d so that $G \phi_{i}=F_{i} \in A_{d}$ for all i. We may then write f as:

$$
f(x)=\left(F_{0}(x): \cdots: F_{n}(x)\right)
$$

and although the values of each $F_{i}(x)$ individually do not make sense, the ratio does give a well-defined point of projective space, provided that some $F_{i}(x) \neq 0$. Thus, from this point of view, the projection from $(1: 0: 0)$:

$$
\pi: \mathbb{P}_{k}^{2}-->\mathbb{P}_{k}^{1} \text { can be written as } \pi\left(x_{0}: x_{1}: x_{2}\right)=\left(x_{1}: x_{2}\right)
$$

and the isomorphism from \mathbb{P}_{k}^{1} to the conic C can be written as:

$$
i: \mathbb{P}_{k}^{1} \rightarrow \mathbb{P}_{k}^{2} ; i\left(x_{0}: x_{1}\right)=\left(x_{0}^{2}: x_{0} x_{1}: x_{1}^{2}\right)
$$

We finish this section with the "completion" of an affine variety. Let

$$
A=k\left[x_{1}, \ldots, x_{n}\right] / P \text { with } X=X(P) \subset \mathbb{A}_{k}^{n}
$$

Then we may homogenize the ideal P by homogenizing its elements:

$$
P_{\text {hom }}=\left\langle f_{\text {hom }}=f\left(x_{1} / x_{0}, \ldots, x_{n} / x_{0}\right) \cdot x_{0}^{d}\right\rangle|f \in P, d=\operatorname{deg}(f)\rangle \subset k\left[x_{0}, \ldots, x_{n}\right]
$$

into generators of $P_{\text {hom }}$. This is a homogeneous prime ideal defining:

$$
Y=X\left(P_{h o m}\right) \subset \mathbb{P}_{k}^{n} \text { satisfying } Y \cap U_{0}=X
$$

This is the Zariski closure of $Y_{0} m X \subset U_{0}$ as a subset of \mathbb{P}^{n}. The main point is that this closure has an open cover by affine varieties $Y_{i}=Y \cap U_{i}$ for all the other open affine space subsets $U_{i} \subset \mathbb{P}^{n}$, allowing us to place each of the points in the closure of X in the interior of an open affine subvariety of Y.
Example. By this prescription, the closure of the affine curve:

$$
X=X\left(x_{2}^{2}-\left(x_{1}^{3}+A x_{1}+B\right)\right) \subset \mathbb{A}_{k}^{2}
$$

in the projective plane \mathbb{P}_{k}^{2} is:

$$
E=X\left(x_{0} x_{2}^{2}-\left(x_{1}^{3}+A x_{0}^{2} x_{2}+B x_{0}^{3}\right)\right) \subset \mathbb{P}_{k}^{2}
$$

which is obtained from X by adding the single point $(0: 0: 1)=E \cap X\left(x_{0}\right)$.
The two other affine spaces $U_{1}, U_{2} \subset \mathbb{P}_{k}^{2}$ intersect E in affine curves:

$$
X_{1}=X\left(x_{0} x_{2}^{2}-\left(1+A x_{0} x_{2}^{2}+B x_{0}^{3}\right)\right) \text { and } X_{2}=X\left(x_{1}-\left(x_{1}^{3}+A x_{0}^{2}+B x_{0}^{3}\right)\right)
$$

and it is in X_{2} that we may study the elliptic curve "near" the extra point.

Assignment 4.

1. Prove that the projection: $\pi\left(x_{0}: \ldots: x_{n}\right)=\left(x_{0}: \ldots: x_{m}\right)$ is not defined at the points of $\Lambda=X\left(\left\langle x_{m+1}, \ldots, x_{n}\right\rangle\right)$. (a) Show that this is the case by finding:

$$
\overline{\pi^{-1}\left(a_{0}: \ldots: a_{m}\right)} \subset \mathbb{P}_{k}^{n}-\Lambda \text { for each point }\left(a_{0}: \ldots: a_{m}\right) \in \mathbb{P}_{k}^{m}
$$

This is called the linear projection $\pi_{\Lambda}: \mathbb{P}_{k}^{n}-->\mathbb{P}_{k}^{m}$ from $\Lambda \subset \mathbb{P}_{k}^{n}$.
(b) If $Q=X\left(x_{0} x_{3}-x_{1} x_{2}\right) \subset \mathbb{P}_{k}^{3}$, completely describe the projection:

$$
\left.\pi_{(0: 0: 0: 1)}\right|_{Q}: Q-->\mathbb{P}_{k}^{2}
$$

Does it extend across $(0: 0: 0: 1) \in X(Q)$? (c) On the other hand, describe:

$$
\left.\pi_{\Lambda}\right|_{Q}: Q-->\mathbb{P}_{k}^{1} \text { for } \Lambda=\{(*: *: 0: 0)\}=X\left(\left\langle x_{2}, x_{3}\right\rangle\right)
$$

and show that this does extend across the points of Λ (as in Proposition 4.11.)
2. The d-uple embedding:

$$
f_{d}: \mathbb{P}_{k}^{n} \rightarrow \mathbb{P}^{\binom{n+d}{d}-1}
$$

is given by $f_{d}\left(x_{0}: \ldots: x_{n}\right)=\left(\ldots: x_{I}: \ldots\right)$ over all the multi-indices I of degree d.
(a) If $n=1$, the image of the d-uple embedding is the rational normal curve:

$$
C_{d}=\left\{\left(a_{0}^{d}: a_{0}^{d-1} a_{1}: \cdots: a_{1}^{d}\right) \mid\left(a_{0}: a_{1}\right) \in \mathbb{P}_{k}^{1}\right\}
$$

corresponding to multi-indices $(d-i, i)$ generalizing the conic from Corollary 4.10. Show that $I\left(C_{d}\right)$ is generated by the 2×2 minors of the matrix:

$$
\left[\begin{array}{cccc}
x_{(d, 0)} & x_{(d-1,1)} & \cdots & x_{(1, d-1)} \\
x_{(d-1,1)} & x_{(d-2,2)} & \cdots & x_{(0, d)}
\end{array}\right]
$$

(b) If $d=2$, the embedding $f_{2}: \mathbb{P}_{k}^{n} \rightarrow \mathbb{P}_{k}^{\binom{n+2}{2}-1}$ is the Veronese embedding. In this case, the monomials of degree 2 are all of the form $x_{i} x_{j}$, and f_{2} can be thought of as:

$$
f_{2}\left(a_{0}: \ldots: a_{n}\right)=\left(\ldots: a_{i} a_{j}: \ldots\right)
$$

whose coordinates can be arranged in a symmetric $n+1 \times n+1$ matrix $A=\left(a_{i, j}\right)$. Show that the image is the rank one locus in symmetric all matrices $\left(x_{i, j}\right)$, and is therefore cut out by the quadratic equations of the principal 2×2 minors. Work out the explicit quadratic equations for the Veronese embedding of \mathbb{P}^{2}.
(c) In general, arrange the multi-indices in a convenient ordering to show that that d-uple embedding is an isomorphism from \mathbb{P}_{k}^{n} to its image via an appropriate inverse projective mapping.
3. The Grassmannian $G(m, n)$ is the set of m-planes in k^{n} (e.g. $G(1, n)=\mathbb{P}_{k}^{n-1}$). Consider the rational map:

$$
\mathbb{P}\left(\operatorname{Hom}\left(k^{m}, k^{n}\right)\right)-->\mathbb{P}^{\binom{n}{m}-1}
$$

given by the $m \times m$ minors of a matrix $A \in \operatorname{Hom}\left(k^{m}, k^{n}\right)$. Work this out explicitly for the case $m=2$ and $n=4$ and convince yourself that the image is $X(q) \subset \mathbb{P}_{k}^{5}$ for a suitable nonsingular (see Problem 5) quadratic polynomial. The image also can be interpreted as the set of indecomposable alternating tensors:

$$
v_{1} \wedge \cdots \wedge v_{m} \text { in } \wedge^{m} k^{n}
$$

4. (a) Prove Euler's formula for homogeneous polynomials $F \in k\left[x_{0}, \ldots, x_{n}\right]_{d}$.

$$
\sum_{i=0}^{n} x_{i} \frac{\partial F}{\partial x_{i}}=d F
$$

(b) The projective tangent plane $T_{p}(X(F)) \subset \mathbb{P}_{k}^{n}$ to $X(F)$ at $p \in X(F)$ is:

$$
\sum_{i=0}^{n} x_{i} \frac{\partial F}{\partial x_{i}}(p)=0
$$

provided that the gradient $\nabla(F)(p) \neq 0$.
The affine tangent plane to $X(f)$ for $f \in k\left[x_{1}, \ldots, x_{n}\right]$ vanishing at $(0, \ldots, 0)$ is:
$X\left(f_{1}\right)$ where $f=f_{1}+f_{2}+\cdots+f_{d}$ are the homogeneous terms of f
Show that if $F(p)=0$ and $p=(1: 0: \ldots: 0)$, then:
$T_{p}(X(F)) \cap U_{0}$ is the affine tangent plane to $X(f)=X(F) \cap U_{0}$ at $(0, \ldots, 0)$
and that if $\nabla(F)(p)=0$, then $f_{1}=0$ for the polynomial $f=F\left(1, x_{1} / x_{0}, \ldots, x_{n} / x_{0}\right)$.
Thus, $p \in X(F)$ is a singular point (no tangent plane) if and only if $\nabla(F)(p)=0$. In particular, if $k=\mathbb{C}$ and $\nabla(F)(p) \neq 0$, then $X(F)$ is a complex manifold of dimension n in a Zariski open neighborhood of $p \in X(F)$.
(c) Show that the elliptic curve $X\left(y^{2}-x^{3}-A x-B\right)$ is non-singular at the "point at infinity" and find its projective tangent line.
5. In the projective plane \mathbb{P}_{k}^{2}, the simplest singularities are simple nodes and cusps. If $f\left(x_{1}, x_{2}\right)=f_{2}+f_{3}+\cdots+f_{d}$ is singular at $(0,0)$, then:

$$
f_{2}\left(x_{1}, x_{2}\right)=\left(a_{1} x_{1}-a_{2} x_{2}\right)\left(b_{1} x_{1}-b_{2} x_{2}\right)
$$

(we're assuming $k=\bar{k}$), and then:
(i) $X(F)$ has a simple node at $(1: 0: 0)$ if $\left(a_{2}: a_{1}\right) \neq\left(b_{2}: b_{1}\right) \in \mathbb{P}^{1}$, i.e. if the linear factors of f_{2} define different lines through $(0,0)$.
(ii) $X(F)$ has a simple cusp at $(1: 0: 0)$ if the linear factors of f_{2} are dependent (but not zero).
Question. How do we interpret this in terms of the tangent cone:

$$
\sum_{i, j} x_{i} x_{j} \frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}=0
$$

at $p \in X(F)$ of a singular point of $X(F) \subset \mathbb{P}_{k}^{2}$?
5. A homogeneous quadric is a quadratic form:

$$
q=\sum_{i \leq j} c_{i, j} x_{i} x_{j} \in k\left[x_{0}, \ldots, x_{n}\right]_{2}
$$

which is identified with the symmetric matrix:

$$
Q=\left[\begin{array}{cccc}
c_{0,0} & \frac{1}{2} c_{0,1} & \cdots & \frac{1}{2} c_{0, n} \\
\frac{1}{2} c_{0,1} & c_{1,1} & \cdots & \frac{1}{2} c_{1, n} \\
& & \vdots & \\
\frac{1}{2} c_{0, n} & \frac{1}{2} c_{1, n} & \cdots & c_{n, n}
\end{array}\right]
$$

so that

$$
q\left(x_{0}, \ldots, x_{n}\right)=\vec{x}^{T} Q \vec{x} \text { for the column vector } \vec{x}=\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Prove that the singular locus of the quadric hypersurface $X(q)$ is:

$$
\Lambda=\mathbb{P}(\operatorname{ker}(Q)) \subset \mathbb{P}_{k}^{n}
$$

so that in particular, $X(q)$ is non-singular if and only if $\operatorname{det}(Q) \neq 0$.
Show (diagonalizing the quadric if like) that the projection from Λ realizes $X(q)$ as the inverse image of a nonsingular quadric $X\left(q_{0}\right)$ (closed up to include Λ) under the projection map:

$$
\pi_{\Lambda}: \mathbb{P}^{n}-->\mathbb{P}(\operatorname{im}(Q))
$$

This is called the cone over the quadric $X\left(q_{0}\right) \subset \mathbb{P}(\operatorname{im}(Q))$.
6. Prove that the only automorphisms of \mathbb{P}_{k}^{n} (as projective varieties) are the natural (transitive) action of $\operatorname{PGL}(n, k)$ What are the automorphisms of a non-singular quadric $Q \subset \mathbb{P}_{k}^{n}$?

