Algebraic Geometry I (Math 6130)

Utah/Fall 2020

4. Projective Varieties.

A projective variety over k is obtained from a \mathbb{Z} -graded k-algebra domain A_{\bullet} (via the functor *maxproj*) analogously to the realization of an affine variety from an k-algebra (ungraded) domain A (via the functor *maxspec*). The key difference is that unlike the affine case, in which the domain is recovered from the regular functions, the only regular functions on a projective variety are the constants.

Definition 4.1. As a set, projective space \mathbb{P}_k^n is the locus of lines through $0 \in k^{n+1}$. **Definition 4.2.** The polynomial ring graded by degree:

$$S_{\bullet} = \bigoplus_{d=0}^{\infty} k[x_0, ..., x_n]_d \text{ is defined by}$$
$$S_d = \left\{ \sum_{|I|=d} c_I x_I \mid x_I = x_0^{i_0} \cdots x_n^{i_n}, c_I \in k \right\}$$

i.e. S_d is the vector space of homogeneous polynomials of degree d, with:

 $S_d \cdot S_e \subset S_{d+e}$

Definition 4.3. An ideal $I \subset S_{\bullet}$ is homogeneous if:

$$I = \bigoplus_{d=0} I \cap k[x_0, ..., x_n]_d$$
, and in that case we let $I_d = I \cap k[x_0, ..., x_n]_d$

i.e. I is generated by (finitely many!) homogeneous polynomials, so that

$$f = f_0 + \dots + f_d \in I \iff f_e \in I_e$$
 for all e

The quotient by a homogeneous ideal is a graded ring:

 $S_{\bullet}/I = A_{\bullet}$ with $A_d = S_d/I_d$ and $A_d \cdot A_e \subset A_{d+e}$

Example. (a) The *irrelevant* homogeneous maximal ideal in S_{\bullet} is:

$$S_{+} = \bigoplus_{d=1}^{\infty} k[x_0, \dots, x_n]_d = \langle x_0, \dots, x_n \rangle$$

This ideal contains all homogeneous ideals in S_{\bullet} other than the ideal $\langle 1 \rangle$.

(b) If $X \subset \mathbb{P}^n_k$, then the affine cone over X is:

$$C(X) = \{(a_0, ..., a_n) \in k^{n+1} \mid k \cdot (a_0, ..., a_n) \in X\} \cup \{(0, ..., 0)\}$$

The ideal $I(X) := I(C(X)) \subset S_{\bullet}$ is a homogeneous ideal (if k is infinite), and:

 $k[X]_{\bullet} = k[x_0, ..., x_n]_{\bullet}/I$ is the quotient ring

(with this convention, $I(\emptyset) = S_+$, though one could argue for $I(\emptyset) = \langle 1 \rangle$)

(c) For a homogeneous ideal $I \subset S_+$,

$$X(I) = C(X) \subset k^{n+1}$$
 is an affine cone over some $X \subset \mathbb{P}_k^n$

and we let $X:=X(I)\subset \mathbb{P}^n_k$ be the associated algebraic subset of \mathbb{P}^n_k .

This sets up a version of the Nullstellensatz for radical homogeneous ideals:

The Projective Nullstellensatz. The radical homogeneous ideals $I \subset S_+$ are in bijection with the algebraic subsets $X = X(I) \subset \mathbb{P}_k^n$ via the mappings X and I, with the prime ideals corresponding to irreducible algebraic sets and the maximal prime ideals properly contained in S_+ corresponding to the points $x \in \mathbb{P}_k^n$ via:

$$m_x = \langle a_j x_i - a_i x_j \rangle$$
 for $x = k \cdot (a_0, ..., a_n)$

Proof. This follows from the ordinary Nullstellensatz applied to affine cones and the fact that rad(I) is a homogeneous ideal when I is a homogeneous ideal.

Projective Coordinates. We will write $x \in \mathbb{P}_k^n$ in coordinates as the ratio:

$$(a_0:\cdots:a_n)$$

with the understanding that $(a_0 : \cdots : a_n) = (\lambda a_0 : \cdots : \lambda a_n)$ for $\lambda \in k^*$.

Remark. If $F \in S_d$ is homogeneous of degree d, then:

$$F(\lambda a_0 : \dots : \lambda a_n) = \lambda^d F(a_0 : \dots : a_n)$$

so although the value F(x) is not well-defined, it does make sense to say F(x) = 0. When F is not homogeneous, even this statement is not well-defined.

Example. In the projective space $\mathbb{P}_k^{n^2-1}$ of $n \times n$ matrices,

 $X(\Delta)$ is the locus (hypersurface) of singular matrices

where $\Delta \in S_n$ is the determinant polynomial. The complement is PGL(n,k).

The following Lemma is useful.

Lemma 4.4. For a homogeneous ideal $I \subset S_{\bullet}$,

 $X(I) = \emptyset \Leftrightarrow S_+ \subseteq \operatorname{rad}(I) \Leftrightarrow S_d \subset X(I) \text{ for some } d$

Proof. The first equivalence is immediate, and if $S_+ \subseteq \operatorname{rad}(I)$, then

$$x_i^{d_i} \in I$$
 for some d_0, \dots, d_n

and then $S_d \subset I$ for $d > (d_0 + \cdots + d_n) - n$. The converse is clear.

We now enlarge our stable of \mathbb{Z} -graded k-algebra domains to include:

 $k[X]_{\bullet} = S_{\bullet}/P$ for homogeneous prime ideals $P \subset S_{+}$

the homogeneous coordinate rings of irreducible subsets of \mathbb{P}_k^n . These rings are:

- \mathbb{Z} -graded k-algebra integral domains, with $k[X]_0 = k$
- finitely generated in degree one by a basis $x_1, ..., x_n$ of $k[X]_1$.

We now construct a prevariety (X, \mathcal{O}_X) out of each such graded k-algebra A_{\bullet} .

The Set X is the collection of maximal prime ideals $m_x \subset A_+$.

The Topology is the Zariski topology, in which the algebraic sets:

$$X(I) = \{m_x \mid I \subset m_x\}$$

are the closed sets, for (radical) homogeneous ideals $I \subset A_+$.

The Field of Rational Functions is:

$$k(X) = \left\{ \frac{F}{G} \mid F, G \in A_d \text{ and } G \neq 0 \right\} \subset k(A)$$

This is a subfield of k(A). The elements of k(X) are homogeneous of degree zero, which makes them (rational) **functions** on X.

Concretely, a choice of basis $x_0, ..., x_n$ of A_1 identifies $A_{\bullet} = k[x_0, ..., x_n]/P$ and:

$$\operatorname{maxproj}(A_{\bullet}) = X = X(P) \subset \mathbb{P}$$

This is an irreducible Zariski topological space by the Projective Nullstellensatz. For $x = (a_0 : ... : a_n) \in X$, and $\phi \in k(X)$,

$$\phi(a_0, ..., a_n) = \frac{F(a_0, ..., a_n)}{G(a_0, ..., a_n)} = \frac{\lambda^d F(a_0, ..., a_n)}{\lambda^d G(a_0, ..., a_n)} = \phi(\lambda a_0, ..., \lambda a_n)$$

is well-defined, provided that $G(a_0, ..., a_n) \neq 0$. More abstractly,

Definition 4.5. A rational function $\phi \in k(X)$ is *regular* at $x \in X$ if

$$\phi = \frac{F}{G}$$
 with $G \notin m_x$

The rational functions that are regular at $x \in X$ are elements of $A_{(m_x)} \subset k(X)$, a local ring with residue field k, in which the value $\phi(x)$ is taken. The assignment:

 $\mathcal{O}_X(U) = \{ \phi \in k(X) \mid \phi \text{ is regular at all points of } U \}$

defines the sheaf \mathcal{O}_X and the sheaved (Noetherian, irreducible) space maxproj (A_{\bullet}) .

In contrast to Proposition 2.7, we have:

Proposition 4.6. $\mathcal{O}_X(X) = k$ when $(X, \mathcal{O}_X) = \max \operatorname{proj}(A_{\bullet})$.

Proof. Let $\phi \in \mathcal{O}_X(X)$ and let $I = \langle G \in A_d | G\phi \in A_d \rangle$ be the homogeneous ideal of denominators of I. By assumption X(I) is empty, and if we could conclude (as in the affine case) that $1 \in I$, we'd have $\phi \in A_0 = k$. Instead, we have:

 $A_d \subset I$ for some d (Lemma 4.4)

In other words, $G\phi \in A_d$ for all $G \in A_d$. This has the odd consequence that:

$$G\phi^2 = (G\phi)\phi \in A_d, \ G\phi^3 = (G\phi^2)\phi \in A_d, \text{etc}$$

which gives an increasing chain of submodules:

 $A_{\bullet} \subset A_{\bullet} + \phi A_{\bullet} \subset A_{\bullet} + \phi A_{\bullet} + \phi^2 A_{\bullet} \subset \dots \subset G^{-1} A_{\bullet}$

of a principal graded A-module. Since A_{\bullet} is Noetherian, the chain stabilizes, and:

 $\phi^n = f_0 + f_1 \phi + \dots + f_{n-1} \phi^{n-1}$ for elements $f_i \in A_{\bullet}$

In degree 0, this is an identity $\phi^n = c_0 + c_1\phi + \cdots + c_{n-1}\phi^{n-1}$ with coefficients in $k = A_0$, and then since $k = \overline{k}$, it follows that $\phi \in k$, as desired. \Box

So X isn't affine (unless it is a point). But it is covered by affine varieties:

Proposition 4.7. Each sheaved space $(X, \mathcal{O}_X) = \max \operatorname{proj}(A_{\bullet})$ is a prevariety.

Proof. Let $G \in A_d$ be a non-zero element of positive degree d. Then

$$A_{(G)} = \left\{ \frac{F}{G^m} \mid \deg(F) = md \right\} \subset k(X)$$

is a k-algebra domain, generated by y_i/G , where y_i are a basis for A_d . Moreover,

$$k(A_{(G)}) = k(X)$$

and $(U_G, \mathcal{O}_X|_{U_G})$ is isomorphic to maxspec $(A_{(G)})$, where $U_G = X - X(G)$. In this case, we can conclude that G^m is in the ideal of denominators of each $\phi \in \mathcal{O}_X(U_G)$ by the Projective Nullstellensatz, as in Proposition 2.7.

Example. The open cover of \mathbb{P}_k^n by n+1 affine spaces $U_0, ..., U_n$.

For each of the coordinate functions $x_0, ..., x_n \in k[x_0, ..., x_n]_1$,

 $U_{x_{i}} = \text{maxspec}(k[x_{0}, ..., x_{n}]_{(x_{i})}) = \text{maxspec}(k[\frac{x_{0}}{x_{i}}, ..., \frac{x_{n}}{x_{i}}])$

is the affine n space of points:

$$U_{x_i} = \{(a_0 : \dots : a_n) \mid a_i \neq 0\} = \{(\frac{a_0}{a_i}, \dots, 1, \dots, \frac{a_n}{a_i})\}$$

Notice in passing that, $PGL(n, k) = U_{\Delta}$ is an affine variety, by this Proposition.

A morphism from a prevariety X to affine space \mathbb{A}_k^n is given by regular functions:

$$g_1 = f^*(x_1), ..., g_n = f^*(x_n) \in \mathcal{O}_X(X)$$

via $f(x) = (g_1(x), ..., g_n(x))$. In particular, the only morphisms from a projective prevariety (or any prevariety with $\mathcal{O}_X(X) = k$) to \mathbb{A}_k^n are the constant maps.

But what about morphisms from X to \mathbb{P}_k^n ? Is there a way to characterize these? The key is *rational functions*. Each prevariety X has its rational function field:

$$k(X) = \lim \mathcal{O}_X(U)$$

When X = maxspec(A) this is k(A) and when $X = \text{maxproj}(A_{\bullet})$, it is k(X). Moreover, if $U \subset X$ is any open subset, then k(U) = k(X).

Definition 4.8. Rational functions $\phi_0, ..., \phi_n \in k(X)$ determine a rational map:

$$f: X - - > \mathbb{P}_k^n; \ f(x) = (\phi_0(x): \dots : \phi_n(x))$$

The domain of the rational map f is larger than one might expect, since:

 $(\phi_0, ..., \phi_n)$ and $(\phi \cdot \phi_0, ..., \phi \cdot \phi_n)$

determine the same rational map to \mathbb{P}_k^n whenever $\phi \in k(X)^*$. This means that one may be able to expand the domain not just by different forms of $\phi_i = F_i/G_i$, but also by multiplying by convenient rational functions ϕ .

Example. (a) The rational projection map $\pi : \mathbb{P}^2_k - - > \mathbb{P}^1_k$ given by:

$$(\frac{x_1}{x_0}:\frac{x_2}{x_0}) = (1:\frac{x_2}{x_1}) = (\frac{x_1}{x_2}:1)$$

is well-defined on the open set $\mathbb{P}_k^2 - \{(1:0:0)\}$ but it cannot be extended further. When restricted to the projective line $X(x_1) \subset \mathbb{P}_k^2$, we get $\pi(a_0:0:a_1) = (0:1)$ and when restricted to $X(x_2)$, we get $\pi(a_0:a_1:0) = (0:1)$, so there is no way to give a value to $\pi(1:0:0)$ to extend π to a continuous map. In fact, when restricted to each line through (1:0:0), the projection map is a **different** constant.

(b) When π is restricted to the conic $C = X(x_1^2 - x_0 x_2) \subset \mathbb{P}^2_k$, however:

$$\pi|_C = (1:\frac{x_2}{x_1}) = (\frac{x_1}{x_2}:1) = (1:\frac{x_1}{x_0})$$

with the last form of the map coming from the identity $x_2/x_1 = x_1/x_0$ in k(C). Moreover, this rational map, defined everywhere, inverts $i : \mathbb{P}^1_k \to C$ given by:

$$i = (1: \frac{x_1}{x_0}: (\frac{x_1}{x_0})^2) = ((\frac{x_0}{x_1})^2: \frac{x_0}{x_1}: 1)$$

Proposition 4.9. A morphism $f : (X, \mathcal{O}_X) \to \mathbb{P}^n_k$ in the category of sheaved spaces is the same as a rational map that is defined at all points of X.

$$f_i: W_i \to U_i = \mathbb{A}_k^n$$
 for an open cover $W_i \subset X$

with the property that $f_i = f_j$ as maps from $W_i \cap W_j$ to \mathbb{P}_k^n . Focusing on one *i*,

$$f_i^*(\frac{x_j}{x_i}) = \phi_i \in \mathcal{O}_{W_i}(W_i) \subset k(X)$$

gives the set $(\phi_0, ..., \phi_n)$ with $\phi_i = 1$ exhibiting f as a rational map. The agreement on the overlap corresponds to replacing each ϕ_i by $\phi \cdot \phi_i$ for $\phi = f_j^*(\frac{x_i}{x_i})$

Corollary 4.10. \mathbb{P}^1_k and C from Example (b) above are **isomorphic** prevarieties.

On the other hand, these two projective prevarieties come from the graded rings:

$$A_{\bullet} = k[x_0, x_1]_{\bullet}$$
 and $A_{2\bullet} = k[x_0^2, x_0 x_1, x_2^2]_{\bullet}$

Exercise. maxproj (A_{\bullet}) and maxproj $(A_{d\bullet})$ are isomorphic prevarieties for all d > 0. **Proposition 4.11.** Products of projective prevarieties are projective.

Proof. It suffices to prove that $\mathbb{P}_k^n \times \mathbb{P}_k^m$ is a projective prevariety, i.e. to locate this prevariety as a closed, irreducible subset of some \mathbb{P}_k^r . Here it is:

 $X = \{ \text{rank one } m \times n \text{ matrices} \} \subset \mathbb{P}_k^{(n+1)(m+1)-1}$

with projective coordinates (a_{ij}) for i = 0, ..., n and j = 0, ..., m and

 $X = X(x_{ij}x_{kl} - x_{il}x_{jk})$ (the vanishing of the two by two minors)

Then X is set-theoretically equal to $\mathbb{P}^n_k \times \mathbb{P}^m_k$ via the Segre embedding

 $((a_0:\ldots:a_n),(b_0:\ldots:b_m))\mapsto (a_ib_j)$

and the Cartesian projections are realized by restricting the rational projections:

$$\pi_{\mathbb{P}^n_h} = (x_{10}/x_{ij} : x_{20}/x_{ij} : \ldots : x_{n0}/x_{ij}) \text{ and } \pi_{\mathbb{P}^m_h} = (x_{01}/x_{ij} : \cdots : x_{0m}/x_{ij})$$

to X (for any choice of x_{ij}), where they are defined everywhere, hence morphisms. On each of the open affines $U_i \times U_j = \mathbb{A}_k^n \times \mathbb{A}_k^m$, this agrees with the product of affine varieties, and so $(X, \pi_{\mathbb{P}^n}, \pi_{\mathbb{P}_k^m})$ is the universal triple. \Box

Corollary 4.12. Projective prevarieties are varieties.

Proof. The diagonal in $\mathbb{P}^n_k \times \mathbb{P}^n_k$ is the closed subset $X(\{x_{ij} - x_{ji}\}) \subset X$.

It follows that quasi-projective prevarieties $U \subset \max \operatorname{proj}(A_{\bullet})$ are also varieties.

This choice of an arbitrary x_{ij} in the proof of Proposition 4.11 points to a useful way to think about morphisms from a projective variety X to \mathbb{P}_k^n . If ϕ_0, \ldots, ϕ_n are rational functions defining a morphism ϕ , then we may choose $G \in A_d$ for some (large) d so that $G\phi_i = F_i \in A_d$ for all i. We may then write f as:

$$f(x) = (F_0(x) : \dots : F_n(x))$$

and although the values of each $F_i(x)$ individually do not make sense, the ratio does give a well-defined point of projective space, provided that some $F_i(x) \neq 0$. Thus, from this point of view, the projection from (1:0:0):

$$\pi: \mathbb{P}_k^2 - - > \mathbb{P}_k^1 \text{ can be written as } \pi(x_0: x_1: x_2) = (x_1: x_2)$$

and the isomorphism from \mathbb{P}^1_k to the conic C can be written as:

$$i: \mathbb{P}_k^1 \to \mathbb{P}_k^2; \ i(x_0:x_1) = (x_0^2: x_0 x_1: x_1^2)$$

We finish this section with the "completion" of an affine variety. Let

$$A = k[x_1, ..., x_n]/P$$
 with $X = X(P) \subset \mathbb{A}^n_k$

Then we may *homogenize* the ideal P by homogenizing its elements:

$$P_{hom} = \langle f_{hom} = f(x_1/x_0, ..., x_n/x_0) \cdot x_0^a \rangle | f \in P, d = \deg(f) \rangle \subset k[x_0, ..., x_n]_{\bullet}$$

into generators of P_{hom} . This is a homogeneous prime ideal defining:

 $Y = X(P_{hom}) \subset \mathbb{P}^n_k$ satisfying $Y \cap U_0 = X$

This is the Zariski closure of $Y_0mX \subset U_0$ as a subset of \mathbb{P}^n . The main point is that this closure has an open cover by affine varieties $Y_i = Y \cap U_i$ for all the other open affine space subsets $U_i \subset \mathbb{P}^n$, allowing us to place each of the points in the closure of X in the *interior* of an open affine subvariety of Y.

Example. By this prescription, the closure of the affine curve:

$$X = X(x_2^2 - (x_1^3 + Ax_1 + B)) \subset \mathbb{A}_k^2$$

in the projective plane \mathbb{P}^2_k is:

$$E = X(x_0 x_2^2 - (x_1^3 + A x_0^2 x_2 + B x_0^3)) \subset \mathbb{P}_k^2$$

which is obtained from X by adding the single point $(0:0:1) = E \cap X(x_0)$.

The two other affine spaces $U_1, U_2 \subset \mathbb{P}^2_k$ intersect E in affine curves:

$$X_1 = X(x_0x_2^2 - (1 + Ax_0x_2^2 + Bx_0^3))$$
 and $X_2 = X(x_1 - (x_1^3 + Ax_0^2 + Bx_0^3))$

and it is in X_2 that we may study the elliptic curve "near" the extra point.

Assignment 4.

1. Prove that the projection: $\pi(x_0 : ... : x_n) = (x_0 : ... : x_m)$ is not defined at the points of $\Lambda = X(\langle x_{m+1}, ..., x_n \rangle)$. (a) Show that this is the case by finding:

$$\overline{\pi^{-1}(a_0:\ldots:a_m)} \subset \mathbb{P}^n_k - \Lambda$$
 for each point $(a_0:\ldots:a_m) \in \mathbb{P}^m_k$

This is called the linear projection $\pi_{\Lambda} : \mathbb{P}_k^n - - > \mathbb{P}_k^m$ from $\Lambda \subset \mathbb{P}_k^n$.

(b) If $Q = X(x_0x_3 - x_1x_2) \subset \mathbb{P}^3_k$, completely describe the projection:

$$\pi_{(0:0:0:1)}|_Q: Q - - > \mathbb{P}^2_k$$

Does it extend across $(0:0:0:1) \in X(Q)$? (c) On the other hand, describe:

$$\pi_{\Lambda}|_Q: Q - - > \mathbb{P}^1_k \text{ for } \Lambda = \{(*:*:0:0)\} = X(\langle x_2, x_3 \rangle)$$

and show that this does extend across the points of Λ (as in Proposition 4.11.)

2. The *d*-uple embedding:

$$f_d: \mathbb{P}^n_k \to \mathbb{P}^{\binom{n+d}{d}-1}$$

is given by $f_d(x_0 : ... : x_n) = (... : x_I : ...)$ over all the multi-indices I of degree d.

(a) If n = 1, the image of the *d*-uple embedding is the *rational normal curve*:

$$C_d = \{ (a_0^d : a_0^{d-1}a_1 : \dots : a_1^d) \mid (a_0 : a_1) \in \mathbb{P}_k^1 \}$$

corresponding to multi-indices (d-i, i) generalizing the conic from Corollary 4.10. Show that $I(C_d)$ is generated by the 2×2 minors of the matrix:

$$\left[\begin{array}{cccc} x_{(d,0)} & x_{(d-1,1)} & \cdots & x_{(1,d-1)} \\ x_{(d-1,1)} & x_{(d-2,2)} & \cdots & x_{(0,d)} \end{array}\right]$$

(b) If d = 2, the embedding $f_2 : \mathbb{P}_k^n \to \mathbb{P}_k^{\binom{n+2}{2}-1}$ is the **Veronese embedding.** In this case, the monomials of degree 2 are all of the form $x_i x_j$, and f_2 can be thought of as:

$$f_2(a_0 : \dots : a_n) = (\dots : a_i a_j : \dots)$$

whose coordinates can be arranged in a symmetric $n + 1 \times n + 1$ matrix $A = (a_{i,j})$. Show that the image is the rank one locus in symmetric all matrices $(x_{i,j})$, and is therefore cut out by the quadratic equations of the principal 2×2 minors. Work out the explicit quadratic equations for the Veronese embedding of \mathbb{P}^2 .

(c) In general, arrange the multi-indices in a convenient ordering to show that that *d*-uple embedding is an isomorphism from \mathbb{P}_k^n to its image via an appropriate inverse projective mapping.

3. The **Grassmannian** G(m, n) is the set of *m*-planes in k^n (e.g. $G(1, n) = \mathbb{P}_k^{n-1}$). Consider the rational map:

$$\mathbb{P}(\operatorname{Hom}(k^m, k^n)) - - > \mathbb{P}^{\binom{n}{m} - 1}$$

given by the $m \times m$ minors of a matrix $A \in \text{Hom}(k^m, k^n)$. Work this out explicitly for the case m = 2 and n = 4 and convince yourself that the image is $X(q) \subset \mathbb{P}_k^5$ for a suitable nonsingular (see Problem 5) quadratic polynomial. The image also can be interpreted as the set of indecomposable alternating tensors:

$$v_1 \wedge \cdots \wedge v_m$$
 in $\wedge^m k^r$

4. (a) Prove Euler's formula for homogeneous polynomials $F \in k[x_0, ..., x_n]_d$.

$$\sum_{i=0}^{n} x_i \frac{\partial F}{\partial x_i} = dF$$

(b) The projective tangent plane $T_p(X(F)) \subset \mathbb{P}^n_k$ to X(F) at $p \in X(F)$ is:

$$\sum_{i=0}^n x_i \frac{\partial F}{\partial x_i}(p) = 0$$

provided that the gradient $\nabla(F)(p) \neq 0$.

The affine tangent plane to X(f) for $f \in k[x_1, ..., x_n]$ vanishing at (0, ..., 0) is:

 $X(f_1)$ where $f = f_1 + f_2 + \dots + f_d$ are the homogeneous terms of f

Show that if F(p) = 0 and p = (1 : 0 : ... : 0), then:

 $T_p(X(F)) \cap U_0$ is the affine tangent plane to $X(f) = X(F) \cap U_0$ at (0, ..., 0)

and that if $\nabla(F)(p) = 0$, then $f_1 = 0$ for the polynomial $f = F(1, x_1/x_0, \dots, x_n/x_0)$.

Thus, $p \in X(F)$ is a singular point (no tangent plane) if and only if $\nabla(F)(p) = 0$. In particular, if $k = \mathbb{C}$ and $\nabla(F)(p) \neq 0$, then X(F) is a complex manifold of dimension n in a Zariski open neighborhood of $p \in X(F)$.

(c) Show that the elliptic curve $X(y^2 - x^3 - Ax - B)$ is non-singular at the "point at infinity" and find its projective tangent line.

5. In the projective plane \mathbb{P}_k^2 , the simplest singularities are simple nodes and cusps. If $f(x_1, x_2) = f_2 + f_3 + \cdots + f_d$ is singular at (0, 0), then:

$$f_2(x_1, x_2) = (a_1x_1 - a_2x_2)(b_1x_1 - b_2x_2)$$

(we're assuming $k = \overline{k}$), and then:

(i) X(F) has a simple node at (1:0:0) if $(a_2:a_1) \neq (b_2:b_1) \in \mathbb{P}^1$, i.e. if the linear factors of f_2 define different lines through (0,0).

(ii) X(F) has a simple cusp at (1:0:0) if the linear factors of f_2 are dependent (but not zero).

Question. How do we interpret this in terms of the tangent cone:

$$\sum_{i,j} x_i x_j \frac{\partial^2 F}{\partial x_i \partial x_j} = 0$$

at $p \in X(F)$ of a singular point of $X(F) \subset \mathbb{P}_k^2$?

5. A homogeneous quadric is a quadratic form:

$$q = \sum_{i \le j} c_{i,j} x_i x_j \in k[x_0, ..., x_n]_2$$

which is identified with the symmetric matrix:

$$Q = \begin{bmatrix} c_{0,0} & \frac{1}{2}c_{0,1} & \cdots & \frac{1}{2}c_{0,n} \\ \frac{1}{2}c_{0,1} & c_{1,1} & \cdots & \frac{1}{2}c_{1,n} \\ & & \vdots \\ \frac{1}{2}c_{0,n} & \frac{1}{2}c_{1,n} & \cdots & c_{n,n} \end{bmatrix}$$

so that

$$q(x_0, ..., x_n) = \vec{x}^T Q \vec{x} \text{ for the column vector } \vec{x} = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Prove that the singular locus of the **quadric hypersurface** X(q) is:

$$\Lambda = \mathbb{P}(\ker(Q)) \subset \mathbb{P}_k^n$$

so that in particular, X(q) is non-singular if and only if $det(Q) \neq 0$.

Show (diagonalizing the quadric if like) that the projection from Λ realizes X(q) as the inverse image of a nonsingular quadric $X(q_0)$ (closed up to include Λ) under the projection map:

$$\pi_{\Lambda}: \mathbb{P}^n - - > \mathbb{P}(\operatorname{im}(Q))$$

This is called the **cone over the quadric** $X(q_0) \subset \mathbb{P}(\operatorname{im}(Q))$.

6. Prove that the only automorphisms of \mathbb{P}_k^n (as projective varieties) are the natural (transitive) action of $\mathrm{PGL}(n,k)$ What are the automorphisms of a non-singular quadric $Q \subset \mathbb{P}_k^n$?

8