Algebraic Geometry I (Math 6130)

Utah/Fall 2020

5. More Projective Varieties.

We prove that projective varieties are proper and also discuss various equivalent formulations of the dimension of a variety, one of which is the degree of the Hilbert polynomial, when X is projective.
Theorem 5.1. \mathbb{P}_{k}^{n} is a proper variety for all n.
Proof. Let X be a prevariety with affine open cover $\left\{Y_{i}\right\}$. Then

$$
\pi_{X}: X \times \mathbb{P}_{k}^{n} \rightarrow X
$$

is a closed map if each projection $\pi_{Y_{i}}: Y_{i} \times \mathbb{P}_{k}^{n} \rightarrow Y_{i}$ is a closed map, and if $Y \subset \mathbb{A}_{k}^{m}$ is a closed subvariety, then π_{Y} is a closed map if $\pi_{\mathbb{A}_{k}^{m}}: \mathbb{A}_{k}^{m} \times \mathbb{P}_{k}^{n} \rightarrow \mathbb{A}_{k}^{m}$ is closed. So we are reduced to showing the projections:

$$
\pi: \mathbb{A}_{k}^{m} \times \mathbb{P}_{k}^{n} \rightarrow \mathbb{A}_{k}^{m} \text { are closed maps for all } m \text { and } n
$$

In other words, we need to show that if $Z \subset \mathbb{A}_{k}^{m} \times \mathbb{P}_{k}^{n}$ is a closed subset, then:

$$
X(I(\pi(Z)))=\pi(Z) \subset \mathbb{A}_{k}^{m}
$$

since this is the defining property of a closed subset of \mathbb{A}_{k}^{m}.
Step 1. Consider the $k\left[y_{1}, \ldots, y_{m}\right]$-algebra:

$$
A_{\bullet}=k\left[y_{1}, \ldots, y_{m}\right] \otimes_{k} S_{\bullet}
$$

of polynomials in x_{0}, \ldots, x_{n} (graded by degree) with coefficients in $k\left[y_{1}, \ldots, y_{m}\right]$. Then a homogeneous polynomial $F \subset A_{d}$ determines a well-defined subset:

$$
X(F)=\left\{\left(\left(a_{1}, \ldots a_{n}\right),\left(b_{0}: \ldots: b_{n}\right)\right) \mid F\left(a_{1}, \ldots, a_{n}, b_{0}, \ldots, b_{n}\right)=0\right\} \subset \mathbb{A}_{k}^{m} \times \mathbb{P}_{k}^{n}
$$

that is a closed subset of the product prevariety, since for each $U_{i} \subset \mathbb{P}_{k}^{n}$,

$$
X(F) \cap\left(\mathbb{A}_{k}^{m} \times U_{i}\right)=X(f) \subset \mathbb{A}_{k}^{m} \times U_{i}=\mathbb{A}_{k}^{m+n}
$$

for $f=F / x_{i}^{d}=F\left(y_{1}, \ldots, y_{n}, \frac{x_{0}}{x_{i}}, \ldots ., \frac{x_{n}}{x_{i}}\right)$. Thus as in the case of \mathbb{P}_{k}^{n}, homogeneous ideals $I \subset A \bullet$ determine closed subsets $X(I) \subset \mathbb{A}_{k}^{m} \times \mathbb{P}_{k}^{n}$. In fact, we claim that this property characterizes closed subsets $Z \subset \mathbb{A}_{k}^{m} \times \mathbb{P}_{k}^{n}$. Indeed, given Z, we define a homogeneous ideal I with:

$$
I_{d}=\left\{F \in A_{d} \left\lvert\, \frac{F}{x_{i}^{d}} \in I\left(Z \cap\left(\mathbb{A}_{k}^{m} \times U_{i}\right)\right)\right. \text { for all } i\right\}
$$

Then $Z \subset X(I)$ since every such homogeneous polynomial F vanishes of Z, by construction. On the other hand, if $p=\left(\left(a_{1}, \ldots, a_{m}\right),\left(b_{0}: \ldots: b_{n}\right)\right) \notin Z$ but $p \in \mathbb{A}_{k}^{m} \times U_{i}$, then there is an $f \in I\left(Z \cap\left(\mathbb{A}_{k}^{m} \times U_{i}\right)\right)$ such that $f(p) \neq 0$, and:

$$
x_{i}^{d} f=F \in I_{d} \text { for all sufficiently large values of } d
$$

so $p \notin X(F)$, and we conclude that $Z=X(I)$ for this homogeneous ideal I.
Step 2. Notice that $I_{0}=I(\pi(Z))$, by definition. We claim that $\pi(Z)=X\left(I_{0}\right)$.
To prove this, we will use the full homogeneous ideal I of Z and:
Nakayama's Lemma. If A is a commutative ring with $1, M$ is a finitely generated A-module, and $I \subseteq A$ is an ideal such that $I M=M$ then $a M=0$ for some $a \in 1+I$.

Proof. Let m_{1}, \ldots, m_{n} generate M. By assumption, we can solve:

$$
m_{i}=\sum_{j=1}^{n} b_{i j} m_{j} \text { for a matrix } B=\left(b_{i j}\right) \text { of elements } b_{i j} \in I
$$

Then the matrix $I_{n}-B$ annihilates all elements $m=\sum a_{i} m_{i} \in M$ and then by Cramer's rule, $a=\operatorname{det}\left(I_{n}-B\right)$ also annihilates M, and has the desired form.

Proof of Step 2. Let $p \notin \pi(Z)$. Our goal is to find an $f \in I_{0}$ so that $f(p) \neq 0$.
Let $m_{p} \subset k\left[y_{1}, \ldots, y_{m}\right]$ be the associated maximal ideal, and consider the pair of homogeneous ideals I (from Step 1), and $m_{p} \otimes S_{\bullet}=m_{p} A_{\bullet}$. Since:

$$
X(I)=Z \text { and } X\left(m_{p} \otimes S_{\bullet}\right)=\pi^{-1}(p)
$$

are disjoint closed subsets of $\mathbb{A}_{k}^{m} \times \mathbb{P}_{k}^{n}$, we may conclude that:

$$
(*) I_{d}+m_{p} \cdot A_{d}=A_{d}
$$

for sufficiently large values of d (as in Lemma 4.4). By Nakayama's Lemma applied to the finitely generated $k\left[y_{1}, \ldots, y_{m}\right]$-module A_{d} / I_{d} and ideal m_{p}, we conclude that there is an $f \in 1+m_{p}$ so that $f \cdot A_{d} / I_{d}=0$, i.e. $f \cdot A_{d} \subset I_{d}$. Thus:

$$
f x_{i}^{d} \in I_{d} \text { for all } i=0, \ldots, n
$$

and then it follows that $f \in I_{0}$ and $f(p) \neq 0$, as desired.
Corollary 5.2. All projective varieties are proper.
Example. Consider the universal hypersurface degree d hypersurface in \mathbb{P}_{k}^{n} defined by the bihomogeneous polynomial inserting variables in place of the coefficients:

$$
F=\sum_{|I|=d} y_{I} x_{0}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

defining a closed (projective) subvariety $X(F) \subset \mathbb{P}_{k}^{\binom{n+d}{n}-1} \times \mathbb{P}_{k}^{n}$.
This is the "universal family" of hypersurfaces of \mathbb{P}_{k}^{n} in the sense that:

$$
\pi^{-1}\left(\cdots: p_{I}: \cdots\right)=X\left(\sum_{I} p_{I} x_{I}\right) \subset\{p\} \times \mathbb{P}_{k}^{n}
$$

is the hypersurface with coefficients p_{I}. Recalling that $\left(c_{0}: \ldots: c_{n}\right) \in X\left(\sum_{I} p_{I} x_{I}\right)$ is a singular point if the gradient $\nabla\left(\sum_{I} p_{I} x_{I}\right)\left(c_{0}: \ldots: c_{n}\right)=0$ we can define the relative singular locus of the projection π as the closed subset:

$$
Z=X\left(\left\langle\frac{\partial F}{\partial x_{0}}, \ldots, \frac{\partial F}{\partial x_{n}}\right\rangle\right) \subset \mathbb{P}_{k}^{\binom{n+d}{n}-1} \times \mathbb{P}_{k}^{n}
$$

and then conclude that:
$\left(^{*}\right)$ The locus of non-singular hypersurfaces $X(F) \subset \mathbb{P}^{n}$ is open in $\mathbb{P}_{k}^{\binom{n+d}{n}-1}$.
The process of deriving equations for $\pi(Z) \subset X$ from equations for $Z \subset X \times \mathbb{P}_{k}^{n}$ is elimination theory, but merely just that the image is closed gives us information. For example, the Fermat hypersurface:

$$
X\left(x_{0}^{d}+\cdots+x_{n}^{d}\right) \subset \mathbb{P}_{k}^{n}
$$

is non-singular (if $\operatorname{char}(k)$ does not divide d), from which we conclude that the locus of non-singular hypersurfaces is not just non-empty, but also open (and dense!).

Consider now a graded module M_{\bullet} over the polynomial ring S. That is,

$$
M_{\bullet}=\bigoplus_{d \in \mathbb{Z}} M_{d} \text { with } S_{d} \cdot M_{e} \subset M_{d+e}
$$

The finitely generated graded modules over $S \bullet$ determine coherent sheaves on \mathbb{P}_{k}^{n}. This will be another conversion of an algebraic object to a geometric structure (coherent sheaves on \mathbb{P}_{k}^{n} include vector bundles on closed subvarieties $X \subset \mathbb{P}_{k}^{n}$).

The twisted modules:

$$
S_{\bullet}(k):=\bigoplus_{d \geq-k} S_{d+k}
$$

are freely generated by $1 \in S(k)_{-k}$, and any homogeneous polynomial $F \in S_{k}$ determines a graded "multiplication by F " homomorphism:

$$
S \xrightarrow{\cdot F} S(k) ; \quad G \mapsto F G
$$

More generally, multiplication by F is a graded homomorphism:

$$
S \otimes_{S} M_{\bullet}=M_{\bullet} \xrightarrow{\cdot F} S(k) \otimes_{S} M_{\bullet}=M_{\bullet}(k)
$$

for any graded module M_{\bullet}, and its twist $M_{\bullet}(k)=\oplus M_{d+k}$.
Theorem 5.3. If M_{\bullet} is a finitely generated graded module over $S_{\bullet}=k\left[x_{0}, \ldots, x_{n}\right]$, then the Hilbert function

$$
h_{M}(d)=\operatorname{dim}_{k} M_{d}
$$

agrees with the Hilbert polynomial $H_{M}(d)$, which is a polynomial of degree $\leq n$, for all sufficiently large values of d.

Proof. The polynomials $H: \mathbb{Z} \rightarrow \mathbb{Z}$ of degree $\leq n$ have a \mathbb{Z}-basis:

$$
1=\binom{d}{0}, d=\binom{d}{1}, \ldots,\binom{d}{n}
$$

and if

$$
H(d)=\sum_{i=0}^{n} a_{i}\binom{d}{i}, \text { then } H(d+1)-H(d)=\sum_{i=0}^{n-1} a_{i+1}\binom{d}{i}
$$

Consider the graded homomorphism $\cdot x_{n}$ with kernel and cokernel N and L :

$$
0 \rightarrow N \rightarrow M \xrightarrow{x_{n}} M(1) \rightarrow L \rightarrow 0
$$

Then N and L are graded $k\left[x_{0}, \ldots, x_{n-1}\right]$ modules, and:

$$
h_{M}(d+1)-h_{M}(d)=h_{L}(d)-h_{N}(d)
$$

By induction, we may assume that $h_{L}(d)$ and $h_{N}(d)$ are polynomial functions of degree $\leq n-1$ for large values of d, and then:

$$
h_{M}(d+1)-h_{M}(d)=\sum_{i=0}^{n-1} b_{i}\binom{d}{n-1}
$$

for large d, and it follows that:

$$
h_{M}(d)=\text { constant }+\sum_{i=1}^{n} b_{i-1}\binom{d}{i}
$$

i.e. h_{M} is a polynomial function of degree $\leq n$ for large d.

Examples. (a) The Hilbert polynomial of $S(k)$ is:

$$
H_{S(k)}=\binom{d+n+k}{n}
$$

and the Hilbert function is:

$$
h_{S(k)}(d)=\left\{\begin{array}{l}
0 \text { for } d \leq-k \\
H_{S(k)}(d) \text { for } d \geq-k-n
\end{array}\right.
$$

(b) Let $F \in S_{k}$, and let $A_{\bullet}=S /\langle F\rangle$. From the short exact sequence:

$$
0 \rightarrow S(-k) \xrightarrow{\cdot F} S \rightarrow A_{\bullet} \rightarrow 0
$$

we see that $H_{A \bullet}(d)=H_{S}(d)-H_{S(-k)}(d)$, which is a polynomial of degree $n-1$.
(c) If $A_{\bullet}=k\left[x_{0}, \ldots, x_{n}\right]_{\bullet} / P$, then the Hilbert polynomial of $X(P) \subset \mathbb{P}_{k}^{n}$ is $H_{A}(d)$. It is not an invariant of the isomorphism class of variety X itself. E.g. A_{\bullet} and A_{m} yield isomorphic projective varieties with Hilbert polynomials $H_{A}(d)$ and $H_{A}(m d)$.
Dimension. The dimension of a variety is its most basic invariant.
Definition 5.4. Let X be a variety over k. Then the dimension of X is:

$$
\operatorname{dim}(X)=\operatorname{tr} \operatorname{deg}_{k} k(X)
$$

where $k(X)$ is the field of rational functions on X.
Topology Detects Dimension. $\operatorname{dim}(X)$ is the length n of the longest chain:

$$
X_{0} \subset X_{1} \subset \cdots \subset X_{n}=X
$$

of closed irreducible subsets of X. Thus it is a topological invariant of X.
Proof. Given a chain as above, choose an open affine $U \subset X$ with $U \cap X_{0} \neq \emptyset$. Then $Y_{i}=X_{i} \cap U$ are a chain of irreducible closed subsets of U, and $\bar{Y}_{i}=X_{i}$. Since $k(X)=k(U)$, it suffices to prove this for $X=U$, an affine variety. If:

$$
Z \subset X=\operatorname{maxspec}(A)
$$

is a closed subvariety, let $f \in A$ be a regular function with $Z \subset X(f)$. Then Z is contained in one of the irreducible components $Y \subset X(f)$. On the other hand, by the Krull Principal Ideal Theorem, $\operatorname{tr} \operatorname{deg}_{k} k(Y)=\operatorname{tr} \operatorname{deg}_{k} k(X)-1$.

By induction, then, for any closed, irreducible $Z \subset X$, there is a chain:

$$
Z=Y^{c} \subset Y^{c-1} \subset \cdots \subset Y^{1} \subset Y^{0}=X
$$

of irreducible closed subsets and regular functions $f_{i} \in k\left[Y^{i-1}\right]$ such that:

$$
Y^{i} \text { is a component of } X\left(f_{i}\right) \subset Y^{i-1} \text { and } \operatorname{dim}\left(Y^{i}\right)=\operatorname{dim}(X)-i
$$

In other words the codimension $\operatorname{cod}_{X}\left(Y^{i}\right)$ of Y^{i} in X is i and in particular, every (zero-dimensional) point $x \in X$ has codimension equal to $\operatorname{dim}(X)$.
Example. (a) The dimension of $X \times Y$ is $\operatorname{dim}(X)+\operatorname{dim}(Y)$. If:

$$
X_{0} \subset X_{1} \subset \cdots \subset X_{n}=X \text { and } Y_{0} \subset Y_{1} \subset \cdots \subset Y_{m}=Y
$$

are maximal chains in X and Y, repsectively, then:

$$
X_{0} \times Y_{0} \subset X_{0} \times Y_{1} \subset \cdots \subset X_{0} \times Y_{m} \subset X_{1} \times Y_{m} \subset \cdots \subset X_{n} \times Y_{m}=X \times Y
$$

is a maximal chain of closed irreducible subsets of the product.
(b) If X is affine and $Z \subset X$ is a closed subvariety of codimension c, then the regular functions $f_{1}, \ldots ., f_{c}$ in the proof above lift to regular functions in $k[X]$ with the property that $Z \subset X$ is an irreducible component of $X\left(f_{1}, \ldots, f_{c}\right)$. It is tempting to conclude that if Z_{1}, Z_{2} have codimension c_{1}, c_{2} in X, then every component of $Z_{1} \cap Z_{2}$ has codimension $\leq c_{1}+c_{2}$. But this is false:
(!) Consider the three-dimensional variety $X=X\left(x_{0} x_{3}-x_{1} x_{2}\right) \subset \mathbb{A}_{k}^{4}$. Then:

$$
Z_{1}=X\left(x_{0}, x_{1}\right) \subset X \text { and } Z_{2}=X\left(x_{2}, x_{3}\right) \subset X
$$

are two-dimensional closed subvarieties (planes) in X, and:
Z_{1} is a component of $X\left(x_{0}\right) \subset X$ and Z_{2} is a component of $X\left(x_{3}\right) \subset X$
These two planes intersect only at the origin, which has codimension three in X and in particular is not a component of:

$$
X\left(x_{0}, x_{3}\right) \subset X, \text { which consists of two lines! }
$$

Definition 5.5. If X is a variety and $Z=X\left(f_{1}, \ldots, f_{c}\right) \subset X$ is irreducible of codimension c, then Z is a (set-theoretic) complete intersection in X.

Example. The planes Z_{1}, Z_{2} above are not complete intersections. There is no single function $g \in k[X]$ such that $Z_{1}=X(g)$.
Proposition 5.6. If X is an affine variety, $Z=X\left(f_{1}, \ldots, f_{c}\right) \subset X$ is a complete intersection, and $Z^{\prime} \subset X$ is a closed subvariety of codimension c^{\prime}, then

$$
\operatorname{codim}_{Y}(X) \leq c+c^{\prime} \text { for all irreducible components } Y \subset Z \cap Z^{\prime}
$$

Proof. As remarked above, we may conclude that Z^{\prime} is an irreducible component of $X\left(g_{1}, \ldots, g_{c^{\prime}}\right)$ for regular functions $g_{i} \in k[X]$. Unlike example (!) we may now also conclude from Krull's Theorem that the irreducible components of $Z \cap Z^{\prime}=$ $X\left(f_{1}, \ldots, f_{c}\right) \cap Z^{\prime}$ are irreducible components of $X\left(g_{1}, \ldots, g_{c^{\prime}}, f_{1}, \ldots, f_{c}\right) \subset X$, and therefore have codimension $\leq c+c^{\prime}$ in X.

Corollary 5.7. If $Z, Z^{\prime} \subset \mathbb{A}_{k}^{n}$ are closed subvarieties of codimension c and c^{\prime}, then every component of $Z \cap Z^{\prime}$ has codimension $\leq c+c^{\prime}$ in \mathbb{A}_{k}^{n}.

Proof. We use the fact that:

$$
Z \cap Z^{\prime}=\left(Z \times Z^{\prime}\right) \cap \Delta \subset \mathbb{A}_{k}^{n} \times \mathbb{A}_{k}^{n}
$$

The codimension of $Z \times Z^{\prime}$ in $\mathbb{A}_{k}^{2 n}$ is $c+c^{\prime}$, and the codimension of Δ is n. Moreover, Δ is a complete intersection:

$$
\Delta=X\left(y_{1}-x_{1}, \ldots, y_{n}-x_{n}\right)
$$

so the Proposition applies to the components of $Z \cap Z^{\prime}=\left(Z \times Z^{\prime}\right) \cap \Delta$. .
Corollary 5.8. Closed subvarieties $Z_{1}, Z_{2} \subset \mathbb{P}_{k}^{n}$ have a non-empty intersection when their codimensions satisfy $c_{1}+c_{2} \leq n$.

Proof. The affine cones $C\left(Z_{1}\right), C\left(Z_{2}\right) \subset \mathbb{A}_{k}^{n+1}$ over Z_{1} and Z_{2} have the same codimensions c_{1} and c_{2} in \mathbb{A}_{k}^{n+1} and $0 \in C\left(Z_{1}\right) \cap C\left(Z_{2}\right)$. But by Corollary 5.7, each component of $C\left(Z_{1}\right) \cap C\left(Z_{2}\right)$ (which is necessarily itself an affine cone), has codimension $\leq c_{1}+c_{2} \leq n$ in \mathbb{A}_{k}^{n+1}. Thus $0 \in C\left(Z_{1}\right) \cap C\left(Z_{2}\right)$ is contained in a component of positive dimension, and $Z_{1} \cap Z_{2} \subset \mathbb{P}_{k}^{n}$ is not empty.
Exercise. The affine cone $C(Z)$ over $Z \subset \mathbb{P}^{n}$ has dimension $\operatorname{dim}(Z)+1$.

Examples. (a) Curves in \mathbb{P}_{k}^{2} always intersect! (E.g. parallel lines meet at infinity). When counted with correct multiplicities, the number of points of $X(F) \cap X(G)$ for homogeneous polynomials F and G not sharing a common factor is:

$$
\operatorname{deg}(F) \cdot \operatorname{deg}(G)
$$

This is Bézout's Theorem. We will discuss it later.
(b) The non-empty intersection property of Corollary 5.8 is topological. Thus:

$$
\mathbb{P}_{k}^{n+m} \text { is not homeomorphic to } \mathbb{P}_{k}^{n} \times \mathbb{P}_{k}^{m}
$$

because the latter fails Corollary 5.8. If $n \geq m$, then:

$$
\mathbb{P}^{n} \times\left\{x_{1}\right\} \cap \mathbb{P}^{n} \times\left\{x_{2}\right\}=\emptyset \text { for } x_{1} \neq x_{2} \in \mathbb{P}_{k}^{m}
$$

but $\operatorname{codiim}_{\mathbb{P}^{n} \times \mathbb{P}^{m}}\left(\mathbb{P}^{n} \times\{x\}\right)=m$ and $2 m \leq n+m$.
(c) If X is affine and $0 \neq f \in k[X]$, then every irreducible component of $X(f)$ has codimension one. This is not true of two or more functions. All we can say is that every component of $X\left(f_{1}, \ldots, f_{c}\right) \subset X$ has codimension c or less.
Hilbert Polynomials and Dimension. If $X=\operatorname{maxproj}\left(A_{\bullet}\right)$ is projective, then:

$$
\operatorname{dim}(X) \text { is the degree of the Hilbert polynomial } \mathrm{H}_{A \bullet}(d)
$$

Proof. We will use the closed embedding:

$$
X \subset \mathbb{P}_{k}^{n} \text { with } A_{\bullet}=S_{\bullet} / P
$$

$(*)$ Projecting $\pi_{p}: \mathbb{P}^{n}-->\mathbb{P}^{n-1}$ from a point $p \notin X$ restricts to a morphism:

$$
\pi_{p}: X \rightarrow \mathbb{P}^{n-1}
$$

that is finite onto its image. If $r=\operatorname{dim}(X)$, then projecting from $n-r$ (successive) points defines a morphism: $\pi: X \rightarrow \mathbb{P}_{k}^{r}$ which we can interpret as the projection from a linear projective subspace $\Lambda \subset \mathbb{P}_{k}^{n}$ of dimension $n-r-1$ that does not intersect X. With a change of basis (of A_{1}), we may assume that the projection is:

$$
\pi_{\Lambda}\left(a_{0}: \ldots: a_{n}\right)=\left(a_{0}: \ldots: a_{r}: 0: \ldots: 0\right)
$$

and when restricted to any of the affine open subsets $U_{i}, i=0, \ldots, r$,

$$
k\left[\frac{x_{1}}{x_{i}}, \ldots, \frac{x_{d}}{x_{i}}\right] \subset A_{\left(x_{i}\right)}
$$

is a polynomial subring over which $A_{\left(x_{i}\right)}$ is a finite module (Noether Normalization). It follows that π is surjective and finite-to-one and that the Hilbert polynomial of:

$$
A_{\bullet} /\left\langle x_{1}, \ldots, x_{d}\right\rangle=S_{\bullet} /\left\langle P, x_{1}, \ldots, x_{d}\right\rangle
$$

is a constant $\delta>0$, equal to the dimension of the k-algebra:

$$
A_{\left(x_{0}\right)} /\left\langle\frac{x_{1}}{x_{0}}, \ldots ., \frac{x_{d}}{x_{0}}\right\rangle
$$

But it follows that:

$$
\mathrm{H}_{A \bullet}(d)=\delta \cdot\binom{d}{r}+\text { lower order }
$$

and in particular that the Hilbert polynomial has degree r.
Remark. The constant δ is the degree of the projective variety $X \subset \mathbb{P}^{n}$. Unlike the dimension, this is not an isomorphism invariant of the variety X, since, for example, the degree of \mathbb{P}^{1} is one, but the degree of the conic $C \subset \mathbb{P}_{k}^{2}$ is two. Interestingly, though, we will see that the constant term of the Hilbert polynomial is an invariant.

Assignment 5.

1. Prove that the the affine cone $C(X)$ over a projective variety $X \subset \mathbb{P}^{n}$ satisfies:

$$
\operatorname{dim}(C(X))=\operatorname{dim}(X)+1
$$

2. A subvariety $X \subset \mathbb{P}_{k}^{n}$ is an ideal-theoretic complete intersection if the ideal: $I(X)=\left\langle F_{1}, \ldots, F_{c}\right\rangle$ is generated by $c=\operatorname{codim}_{\mathbb{P}^{n}}(X)$ homogeneous polynomials.
(a) Find homogeneous polynomials F, G of degrees two and three so that the twisted cubic $C \in \mathbb{P}_{k}^{3}$ is the set-theoretic complete intersection $C=X(F) \cap X(G)$.
(b) Find the leading coefficient of the Hilbert polynomial:

$$
H_{X}(d) \text { for } X=X\left(F_{1}, \ldots ., F_{c}\right) \subset \mathbb{P}^{n}
$$

of an ideal-theoretic complete intersection of polynomials of degrees d_{1}, \ldots, d_{c}.
(c) Compute the degrees (and codimensions) of the rational normal curves in \mathbb{P}^{n}. Conclude that they are never ideal-theoretic complete intersections.
3. (a) Prove that if $f: \mathbb{P}^{n} \rightarrow \mathbb{P}^{m}$ is a morphism then there are $m+1$ homogeneous polynomials $F_{0}, \ldots, F_{m} \in S_{d}$ for some d such that:

$$
f(x)=\left(F_{0}(x): \ldots: F_{m}(x)\right)
$$

"on the nose." I.e. $F_{i}(x) \neq 0$ for some i for each $x \in \mathbb{P}^{n}$.
(b) Conclude that there are no morphisms $f: \mathbb{P}^{n} \rightarrow \mathbb{P}^{m}$ when $m<n$.
4. A nonsingular curve is a variety C such that:

$$
\operatorname{dim}(C)=1 \text { and } \mathcal{O}_{C, p} \text { is a discrete valuation ring }
$$

for all points $p \in C$. Prove that every rational map:

$$
f: C-->\mathbb{P}^{n}
$$

is a morphism, defined at all points of C.
5. (a) Compute the dimension of the Grassmannian $\operatorname{Gr}(m, n)$ of m planes in k^{n}.

The degeneracy loci:

$$
D_{r}=\left\{A: k^{m} \rightarrow k^{n} \mid \operatorname{rk}(A) \leq r\right\} \subset \mathbb{A}_{k}^{m n}
$$

are algebraic subsets. There is an "incidence correspondence" between D_{r} and $\operatorname{Gr}(m-r, m)$ defined by:

$$
I=\{(A, \Lambda) \mid \Lambda \subset \operatorname{ker}(A)\} \subset \mathbb{A}_{k}^{m n} \times \operatorname{Gr}(m-r, r)
$$

This is an algebraic subset of the product,
(b) Analyze the fibers $\pi_{2}^{-1}(\Lambda) \subset I$ of the projection $\left.\pi_{2}\right|_{I}: I \rightarrow \operatorname{Gr}(m-r, r)$ and use your analysis to argue that I is a variety and find its dimension.
(c) Analyze the morphism $\pi_{1}: I \rightarrow D_{r}$ and conclude that $\operatorname{dim}(I)=\operatorname{dim}\left(D_{r}\right)$. Verify that the codimension of D_{r} in $\mathbb{A}_{k}^{n m}$ is $(n-r)(m-r)$.
6. Comment on the following. If $X \subset \mathbb{P}^{n}$, then any rational map:

$$
f: X-->\mathbb{P}^{m}
$$

is given by $F_{0}, \ldots, F_{m} \in S_{d} / P_{d}$ (P is the homogeneous ideal of X). Reembedding X in $\mathbb{P}^{\binom{n+d}{n}-1}$ (via the d-uple embedding), the forms F_{0}, \ldots, F_{m} become linear, and f is the restriction of a projection (rational map) from $\mathbb{P}^{\binom{n+d}{n}-1}$ to \mathbb{P}^{m}.

