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6. Maps.

We study some basic properties of rational maps and regular maps of varieties.
Upper semi-continuity of discrete invariants is a prominent feature in algebraic
geometry, and we will see that the fiber dimension of a regular map f : X → Y of
varieties is an upper semi-continuous function e : X → Z. As an application, we
prove Chevalley’s Theorem that proper algebraic groups are abelian.

A regular map f : X → Y of varieties is a morphism of sheaved spaces, i.e. f
is a continuous map with the property that:

f∗(OY (U)) ⊂ OX(f−1(U))

for all open subsets U ⊂ Y . In particular, if the image of f is dense in Y , then
passing to direct limits, we get:

f∗ : k(Y ) ↪→ k(X)

an injection of fields of rational functions. Such a regular map is called dominant.

Conversely, an inclusion of fields of rational functions:

i : k(Y ) ↪→ k(X)

determines a dominant rational map f : X − − > Y (partially) defined as a
map to each open affine subset U = maxspec(k[y1, ..., yn/P ) ⊂ Y by:

f(x) = (i(y1)(x), ...., i(yn)(x)) ∈ U ⊂ Ank
when each i(yj) ∈ OX,x. Intrinsically, if x ∈ X, then f(x) = y provided that:

OX,x ∩ i(k(Y )) = i(OY,y)

and f is undefined at x if there is no such y ∈ Y . A general rational map from X
to Y is a dominant rational map to a closed subvariety Z ⊂ Y .

A rational map f is regular when restricted to a well-defined (maximal) open
subset V ⊂ X, which is its domain. Alternatively, let:

Z = Γf ⊂ X × Y
be the closure of the graph of f (restricted to V ). Via the projection to Y , we get:
f := πY : Z → Y which is a regular extension of the regular map f |V : V → Y .

We say that X
πX← Z

f→ Y resolves the indeterminacy of the rational map f .

Example. The map f : An+1 − − > Pnk ; f(a0, a1, ..., an) = (a0 : a1 : ... : an) is
defined away from the origin. The closure of the graph of f is:

Z = X(〈xiyj − xjyi〉) ⊂ An+1
k × Pnk

If (b0 : ... : bn) ∈ Pnk , then:

f
−1

(b0 : ... : bn) = {((λb0, ...., λbn), (b0 : ... : bn)) | λ ∈ k} ⊂ Z
and the first projection π : Z → An+1

k satisfies:

π−1(0, ..., 0) = {(0, ..., 0)} × Pnk ⊂ Z and π : (π−1(V ))→ V is an isomorphism

for V = An+1
k − 0.
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This generalizes to affine cones. If P ⊂ k[x0, ..., xn] is a homogeneous prime ideal
and X = X(P ) ⊂ Pnk , then the rational map f : C(X) − − > X defined as above
is defined away from the origin, and

Z = Γf = X(〈P, xiyj − xjyi〉) ⊂ An+1
k × Pnk

for the homogeneous ideal in A = k[x0, ..., xn] ⊗k S• generated by P (in A0) and
the xiyj − xjyj (in A1). The fibers of the map f : Z → X are lines and the map
π : Z → C(X) is an isomorphism away from 0 ∈ C(X) with fiber {0} ×X over 0.

Next we ask “What do dominant regular maps look like?”

Definition 6.1. A dominant regular map f : X → Y is birational if the associated
injective map on fields f∗ : k(Y ) → k(X) is an isomorphism. Equivalently, f is
birational if it has a rational inverse (corresponding to the isomorphism (f∗)−1).

Proposition 6.2. If f : X → Y is a birational regular map, then there is a
nonempty open subset U ⊂ Y such that the induced regular map:

f |f−1(U) : f−1(U)→ U

is an isomorphism of varieties (i.e. a biregular map).

Proof. First, we show that there are open subsets of X and Y such that:

f |V : V → U is an isomorphism

Let U0 ⊂ Y and V0 ⊂ f−1(U0) be open affine subsets. Then f |V0
: V0 → U0 is a

birational regular map of affine varieties, so f∗ : k[U0]→ k[V0] is an injective map
of k-algebras that is an isomorphism on fields of fractions. If k[V0] = k[x1, ..., xn]/P
and (f∗)−1(xi) = gi/hi ∈ k(U0), let h =

∏
hi. Then:

f∗ : k[U0]h → k[V0]f∗(h)

is an isomorphism of k-algebras, and so f : V0−X(h)→ U0−X(f∗h) is the desired
isomorphism. Next, let U1 = U0 −X(f∗h) and Z = f−1(U1)− (V0 −X(h)). Then
Z is an algebraic set, which is a union of irreducible closed sets Zi of dimensions
dim(Zi) < dim(X). The closures of their images f(Zi) ⊂ U1 are also irreducible,
of dimension at most dim(Zi), and so:

U = U1 − f(Z)

is nonempty, and satisfies the requirement of the Proposition. �

Example. Apply the proof of the Proposition to the map:

f : A2
k → A2

k; f(x1, x2) = (x1, x1x2)

This map collapses the y-axis to the origin and does not map to any points of the
form (0, y) with y 6= 0. The map f∗ : k[y1, y2] → k[x1, x2] takes y1 7→ x1 and
y2 7→ x1x2 so (f∗)−1(x1) = y1 and (f∗)−1(x2) = y2/y1. Thus:

f∗ : k[y1, y2]y1 → k[x1, x2]x1=f∗y1

is an isomorphism, which corresponds to the isomorphism:

f : A2
k −X(x1)→ A2

k −X(y1) of planes minus y-axes

Definition 6.3. A dominant rational map of varieties is birational if it has an
inverse rational map, or equivalently if the map on fields is an isomorphism.
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By restricting to the open domain of a birational map f : X−− > Y and applying
the Proposition, we obtain an open subset U ⊂ Y such that f : f−1(U)→ U is an
isomorphism. In other words, inside the image of every birational map of varieties
there is an open set that is isomorphic to its preimage. Notice that it isn’t even a
priori clear that the image of a dominant rational map must contain an open set
(all we know from the definition is that the image is dense!). On the other hand,
a birational regular map f : X → Y of projective varieties is surjective because
projective varieties are proper, but such a map need not be an isomorphism.

For general dominant regular maps, we have the following:

Theorem 6.4. If f : X → Y is a dominant map, let r = dim(X)− dim(Y ). Then:

(a) (i) Every irreducible component of every fiber f−1(y) has dimension ≥ r.
More generally,

(ii) If Z ⊂ Y is a closed subvariety and W ⊂ f−1(Z) is an irreducible
component that dominates Z, then dim(W ) ≥ r + dim(Z).

(b) There is an open subset U ⊂ f(X) of the image of f with the following
“transverse” property:

(i) If y ∈ U then every component of f−1(y) has dimension equal to r.

More generally,

(ii) If Z ⊂ U is a closed subvariety then every irreducible component of f−1(Z)
has dimension r + dim(Z).

Proof. It suffices to prove (a) replacing Y by an affine open subset U ⊂ Y
intersecting Z, and Z by Z∩U and W by W ∩f−1(U). Then as in §5, Z∩U ⊂ U is
an irreducible component of X(g1, ..., gc) for c = codimZ(Y ) and g1, ...., gc ∈ k[U ].
Shrinking U (and Z ∩U) further to exclude the other components, we may assume
that Z = X(g1, ..., gc) ⊂ U is a set-theoretic complete intersection. Then W ⊂
f−1(Z) = X(f∗g1, ..., f

∗gc) is an irreducible component, and by Krull’s Theorem,
it follows that codimXW ≤ c, which gives (a).

For (b), we may also assume Y is affine (replacing it with an open affine subset),
and we may also assume X is affine, since if (b) holds for each f : Vi → Y for an
open cover {Vi} of X, then it holds for X itself. So we consider:

f : X → Y and f∗ : k[Y ] ↪→ k[X] ⊂ k(X)

with k(Y ) ⊂ k(X) a field extension of transcendence degree r. Consider:

k(Y ) ⊂ A = k(Y )⊗k[Y ] k[X]

This is a finitely generated domain over the field k(Y ) with fraction field k(X), so
by the Noether Normalization Theorem,

(∗∗) k(Y )[x1, ..., xr] ⊂ A
is a finitely generated module for some x1, ..., xr ∈ A, which we may take to be
elements of k[X] (clearing denominators). Now consider:

(∗) k[Y ][x1, ..., xr] ⊂ k[X]

If this were a finitely generated module, we’d have:

f : X
g→ Y × Ark

πY→ Y



4

a composition of a finite map and a projection, which is a surjective dominant
map satisfying (b) with U = Y ! We can’t conclude (∗) is a finite module, but if
φ ∈ k[X] ⊂ A, then φ satisfies a monic polynomial relation:

φn + p1φ
n−1 + · · ·+ pn = 0 for pi ∈ k(Y )[x1, ..., xr]

since φ ∈ A is a finite module over k(Y )[x1, ..., xn], and if h ∈ k[Y ] is chosen so
that hpi ∈ k[Y ][x1, ..., xr] for all i, then φ is finite over k[Y ]h[x1, ..., xr]. Since k[X]
is finitely generated as an algebra over k[Y ][x1, ..., xr], it follows by induction that:

(∗ ∗ ∗) k[Y ]h[x1, ..., xr] ⊂ k[X]h

is a finitely generated module for some h ∈ k[Y ], giving (b) for U = Uh ⊂ Y . �

Definition 6.5. An integer-valued function:

e : X → Z
is upper-semi continuous if Xn = {x ∈ X | e(x) ≥ n} ⊂ X are closed for all n.

Remark. If X is an irreducible Noetherian space, then the nested closed sets:

· · · ⊃ Xn−1 ⊃ Xn ⊃ · · ·
stabilize to the empty set, and e is bounded above. If e has a minimum value r,
then U = X −Xr+1 is a dense open subset on which e(x) ≡ r for all x ∈ U .

Corollary 6.6. If f : X → Y is a dominant regular map, then the function:

e : X → Z; e(x) = max{dim(Z) | Z ⊂ f−1f(x) and x ∈ Z}
is an upper-semi continuous function with minimum value r = dim(X)− dim(Y ).

Proof. This follows from the Theorem and induction on the dimension of Y .
The minimum value e(x) = r is taken on the open set f−1(U) ⊂ X and X−f−1(U)

is a union of irreducible components Zi dominating f(Zi) = Wi ⊂ Y − U . Then
Xk = ∪(Zi)k for all k > r is a union of closed sets by the inductive assumption,
since dim(Wi) < dim(Y ). �

An Application. An algebraic group G over k is a pointed variety e ∈ G
together with regular “multiplication” and “inverse” maps:

m : G×G→ G and i : G→ G

that make the points of G into a group with identity element e.

Examples of affine algebraic groups include:

Gm := maxspec(k[x, x−1]) = k∗ with multiplication and

Ga := maxspec(k[x]) = k with addition

and the matridx groups:

GL(n, k), SL(n, k), PGL(n, k), SO(n, k),Sp(2n, k)

that are not abelian groups when n > 1.

Theorem (Chevalley). If e ∈ G is a proper algebraic group, then G is abelian.

Proof. Consider the regular conjugation map:

c : G×G→ G; c(g, h) = ghg−1

We may think of this as a family of regular maps indexed by h ∈ G:

ch : G→ G; ch(g) = ghg−1
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Note that ce : G→ G is the constant map to e ∈ G and that in general ch is the
constant map (to h) if and only if h is in the center of G.

The Theorem follows from:

Proposition 6.7. If f : X × Y → Z is a regular map of varieties and X is proper,
then if fy : X → Z is constant for some y0 ∈ Y , it is constant for all y ∈ Y .

Proof. Consider the graph Γf ⊂ X × Y × Z and the projection:

π : Γf → Y × Z with image π(Γf ) = W

Then W is a closed subvariety of Y × Z since X is proper, and the fibers of π are:

π−1(y, z) = {x ∈ X | fy(x) = z} ⊂ X × {y} × {z}
Thus to show that fy is the constant map it suffices to prove that the dimension of
(each component of) π−1(y, z) ⊂ Γf is greater than or equal to dim(X).

Since Γf is the graph of f , we have dim(Γf ) = dim(X) + dim(Y ), and then
the desired inequality follows from Theorem 6.4(a) for all y if we can show that
dim(W ) ≤ dim(Y ). But projecting once more:

p : W → Y

and using the fact that fy0(X) = z0 is the constant map, we have:

p−1(y0) = {(y0, z) | fy0(x) = z for some x ∈ X} = {(y0, z0)}
is a single point, and by Theorem 6.4 (a) again, we conclude that dim(W ) ≤ dim(Y ).

Example. Start with an affine cubic curve in Weierstrass form:

X = X(y2 − x3 −Ax−B) ⊂ A2
k

with nonzero discriminant and take the closure:

E = X ∪ {e} = X(y2z − x3 −Axz2 −Bz2) ⊂ P2
k

where e ∈ E is the single extra “point at infinity” e = (0 : 1 : 0). Define the inverse:

i : E → E by i(a : b : c) = (a : −b : c)

(noting that the inverse fixes e), and then:

m = i ◦ t : E × E → E

where t(p, q) ∈ E is the “third point of intersection” of E with the line l = pq.
There are two important points to verify:

a) Why is the map t a regular map?

(b) Why is the group law defined this way associative?


