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6. MAPs.

We study some basic properties of rational maps and regular maps of varieties.
Upper semi-continuity of discrete invariants is a prominent feature in algebraic
geometry, and we will see that the fiber dimension of a regular map f: X — Y of
varieties is an upper semi-continuous function e : X — Z. As an application, we
prove Chevalley’s Theorem that proper algebraic groups are abelian.

A regular map f: X — Y of varieties is a morphism of sheaved spaces, i.e. f
is a continuous map with the property that:

F1 Oy () C Ox(f71(U))

for all open subsets U C Y. In particular, if the image of f is dense in Y, then
passing to direct limits, we get:

k(YY) = k(X)
an injection of fields of rational functions. Such a regular map is called dominant.
Conversely, an inclusion of fields of rational functions:
i:k(Y) = E(X)

determines a dominant rational map f : X — — > Y (partially) defined as a
map to each open affine subset U = maxspec(k[y1,...,yn/P) C Y by:

f(@) = (i(y1) (@), s i(yn) (@) €U C AR
when each i(y;) € Ox . Intrinsically, if « € X, then f(z) =y provided that:
Ox,Ni(k(Y)) =i(Oy,y)

and f is undefined at x if there is no such y € Y. A general rational map from X
to Y is a dominant rational map to a closed subvariety Z C Y.

A rational map f is regular when restricted to a well-defined (maximal) open
subset V' C X, which is its domain. Alternatively, let:

Z=T;CcXxY

be the closure of the graph of f (restricted to V'). Via the projection to Y, we get:
f =7y : Z = Y which is a regular eztension of the regular map f|y : V — Y.

We say that X & Z 7, ¥ resolves the indeterminacy of the rational map f.

Example. The map f : A"t — — > P¥ f(ag,a1,...,an) = (ap : a1 : ... : ay) is
defined away from the origin. The closure of the graph of f is:

Z = X((zy; — vjy:)) C AT < PR
If (bo : ... 1 by) € P}, then:
F b0 ¢ oee b)) = {(Abgy cooss A (b0 & e 2 b)) | A €K} C Z
and the first projection 7 : Z — AZH satisfies:
7710,...,0) = {(0,...,0)} x P} € Z and 7 : (" (V)) = V is an isomorphism
for V = A} —0.



This generalizes to affine cones. If P C k[xo, ..., 2] is a homogeneous prime ideal
and X = X (P) C P}, then the rational map f : C(X) — — > X defined as above
is defined away from the origin, and

Z =Ty = X((Pawy; — z;5:)) C AL x P}

for the homogeneous ideal in A = k[xq, ..., x,] ® Se generated by P (in Ap) and
the z;y; — z;y; (in A;). The fibers of the map f : Z — X are lines and the map
7 Z — C(X) is an isomorphism away from 0 € C'(X) with fiber {0} x X over 0.

Next we ask “What do dominant regular maps look like?”

Definition 6.1. A dominant regular map f : X — Y is birational if the associated
injective map on fields f* : k(YY) — k(X) is an isomorphism. Equivalently, f is
birational if it has a rational inverse (corresponding to the isomorphism (f*)~1).

Proposition 6.2. If f : X — Y is a birational regular map, then there is a
nonempty open subset U C Y such that the induced regular map:

flyrwy : F7HU) = U
is an isomorphism of varieties (i.e. a biregular map).
Proof. First, we show that there are open subsets of X and Y such that:
flv : V = U is an isomorphism

Let Up C Y and Vi C f~1(Up) be open affine subsets. Then fly, : Vo — Uy is a
birational regular map of affine varieties, so f* : k[Ug] — k[Vb] is an injective map
of k-algebras that is an isomorphism on fields of fractions. If k[Vy] = k[z1, ..., x,]/ P
and (f*)~'(x;) = g;/h; € k(Up), let h =[] h;. Then:

f* : k[UQ]}L — k[VO]f*(h)
is an isomorphism of k-algebras, and so f : Vo — X (h) — Uy — X (f*h) is the desired
isomorphism. Next, let Uy = Uy — X (f*h) and Z = f~1(U;y) — (Vo — X(h)). Then
Z is an algebraic set, which is a union of irreducible closed sets Z; of dimensions
dim(Z;) < dim(X). The closures of their images f(Z;) C U; are also irreducible,
of dimension at most dim(Z;), and so:

U=Ui-f(Z)

is nonempty, and satisfies the requirement of the Proposition. O

Example. Apply the proof of the Proposition to the map:
[ AL = A f(r1,22) = (w1, 2172)

This map collapses the y-axis to the origin and does not map to any points of the
form (0,y) with y # 0. The map f* : k[y1,y2] — klx1,22] takes y; — 21 and
Yo > 2129 80 (f*) 7Y (x1) = y1 and (f*)"(22) = y2/y1. Thus:

f* : k[yla y2]y1 — k[x17$2]$1=f*yl
is an isomorphism, which corresponds to the isomorphism:
f A7 — X(z1) = A? — X(y1) of planes minus y-axes

Definition 6.3. A dominant rational map of varieties is birational if it has an
inverse rational map, or equivalently if the map on fields is an isomorphism.
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By restricting to the open domain of a birational map f : X—— > Y and applying
the Proposition, we obtain an open subset U C Y such that f: f~*(U) — U is an
isomorphism. In other words, inside the image of every birational map of varieties
there is an open set that is isomorphic to its preimage. Notice that it isn’t even a
priori clear that the image of a dominant rational map must contain an open set
(all we know from the definition is that the image is dense!). On the other hand,
a birational regular map f : X — Y of projective varieties is surjective because
projective varieties are proper, but such a map need not be an isomorphism.

For general dominant regular maps, we have the following:
Theorem 6.4. If f: X — Y is a dominant map, let 7 = dim(X) — dim(Y"). Then:
(a) (i) Every irreducible component of every fiber f~!(y) has dimension > r.
More generally,
(ii) If Z C Y is a closed subvariety and W C f~1(Z) is an irreducible
component that dominates Z, then dim(W) > r + dim(Z2).

(b) There is an open subset U C f(X) of the image of f with the following
“transverse” property:

(i) If y € U then every component of f~!(y) has dimension equal to r.
More generally,

(ii) If Z C U is a closed subvariety then every irreducible component of f~1(2)
has dimension r + dim(Z).

Proof. It suffices to prove (a) replacing Y by an affine open subset U C Y
intersecting Z, and Z by ZNU and W by WN f~1(U). Then as in §5, ZNU C U is
an irreducible component of X (g1, ..., g.) for ¢ = codimz(Y) and g1, ...., g. € k[U].
Shrinking U (and Z NU) further to exclude the other components, we may assume
that Z = X(g1,...,9.) C U is a set-theoretic complete intersection. Then W C
f~Y2)=X(f*g1,..., f*ge) is an irreducible component, and by Krull’s Theorem,
it follows that codimxW < ¢, which gives (a).

For (b), we may also assume Y is affine (replacing it with an open affine subset),
and we may also assume X is affine, since if (b) holds for each f : V; — Y for an
open cover {V;} of X, then it holds for X itself. So we consider:

f:X =Y and f*: k[Y] — k[X] C k(X)
with k(Y") C k(X) a field extension of transcendence degree . Consider:
EY)YCc A=k() Qk[y] k[X]

This is a finitely generated domain over the field £(Y") with fraction field k(X), so
by the Noether Normalization Theorem,

(x%) E(Y)[z1,...,2,] C A

is a finitely generated module for some xi,...,z, € A, which we may take to be
elements of k[X] (clearing denominators). Now consider:

(*) k[Y][z1, ..., 2] C k[X]
If this were a finitely generated module, we’d have:

X5y xAL XY



a composition of a finite map and a projection, which is a surjective dominant
map satisfying (b) with U = Y! We can’t conclude (x) is a finite module, but if
¢ € k[X] C A, then ¢ satisfies a monic polynomial relation:

" +p1¢" "+ +p,=0for p; € K(Y)[21, ..., 2]

since ¢ € A is a finite module over k(Y)[x1,...,z,], and if h € k[Y] is chosen so
that hp; € k[Y][z1, ..., ] for all 4, then ¢ is finite over k[Y][z1, ..., z,]. Since k[X]
is finitely generated as an algebra over k[Y][z1, ..., z,], it follows by induction that:

(k%) k[Y]p[z1, ..., 2] CK[X]n
is a finitely generated module for some h € k[Y], giving (b) for U=U, CY. O
Definition 6.5. An integer-valued function:
e: X =7
is upper-semi continuous if X,, = {x € X | e(x) > n} C X are closed for all n.
Remark. If X is an irreducible Noetherian space, then the nested closed sets:
DXy 10Xy D

stabilize to the empty set, and e is bounded above. If e has a minimum value r,
then U = X — X1 is a dense open subset on which e(z) =r for all z € U.

Corollary 6.6. If f: X — Y is a dominant regular map, then the function:
e: X = Z; e(z) =max{dim(2) | Z C f'f(x) and z € Z}
is an upper-semi continuous function with minimum value r = dim(X) — dim(Y").

Proof. This follows from the Theorem and induction on the dimension of Y.
The minimum value e(x) = r is taken on the open set f~}(U) C X and X — f~1(U)
is a union of irreducible components Z; dominating f(Z;) = W; C Y — U. Then
X = U(Z;)g for all k > r is a union of closed sets by the inductive assumption,
since dim(W;) < dim(Y"). O

An Application. An algebraic group G over k is a pointed variety ¢ € G
together with regular “multiplication” and “inverse” maps:

m:GxG—Gandi:G— G

that make the points of G into a group with identity element e.

Examples of affine algebraic groups include:
G,y := maxspec(k[z,27']) = k* with multiplication and
G, := maxspec(k[z]) = k with addition
and the matridx groups:
GL(n, k), SL(n,k), PGL(n, k), SO(n, k),Sp(2n, k)

that are not abelian groups when n > 1.
Theorem (Chevalley). If e € G is a proper algebraic group, then G is abelian.

Proof. Consider the regular conjugation map:

c:GxG—G; c(g,h) =ghg™?
We may think of this as a family of regular maps indexed by h € G:
cn: G — G cnlg) =ghg™
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Note that ¢, : G — G is the constant map to e € G and that in general ¢, is the
constant map (to h) if and only if h is in the center of G.

The Theorem follows from:

Proposition 6.7. If f: X XY — Z is a regular map of varieties and X is proper,
then if f, : X — Z is constant for some gy € Y, it is constant for all y € Y.

Proof. Consider the graph I'y C X x Y x Z and the projection:
m: Ty =Y x Z with image n(I'y) = W
Then W is a closed subvariety of Y x Z since X is proper, and the fibers of m are:
7y, 2) = fw € X | f,(a) = 2} € X x {y} x {¢}

Thus to show that f, is the constant map it suffices to prove that the dimension of
(each component of) 7=*(y,z) C I'y is greater than or equal to dim(X).

Since I'y is the graph of f, we have dim(I'y) = dim(X) + dim(Y’), and then
the desired inequality follows from Theorem 6.4(a) for all y if we can show that
dim(W) < dim(Y'). But projecting once more:

p:W =Y
and using the fact that f,, (X) = 2o is the constant map, we have:
P (0) = {00, 2) | fua (&) = 2 for some @ € X} = {(yo, 20)}
is a single point, and by Theorem 6.4 (a) again, we conclude that dim(W) < dim(Y).
Example. Start with an affine cubic curve in Weierstrass form:
X =X(y* - 2%~ Az — B) C A?

with nonzero discriminant and take the closure:

E=XU{e} = X(y*2 —2® — Az2® — Bz*) C P},
where e € E is the single extra “point at infinity” e = (0 : 1 : 0). Define the inverse:

i:E—FE by i(a:b:¢c)=(a:—-b:c)
(noting that the inverse fixes €), and then:
m=tot: EXE—FE

where t(p,q) € F is the “third point of intersection” of E with the line [ = pgq.
There are two important points to verify:

a) Why is the map ¢ a regular map?
(b) Why is the group law defined this way associative?



