Algebraic Geometry I (Math 6130)

Utah/Fall 2020

7. Local Properties.

A point $x \in X$ of a variety over k is **xgular** if $\dim_k(m_x/m_x^2) = \dim(X)$, i.e. if the stalk $\mathcal{O}_{X,x}$ of the sheaf of regular functions is a regular local ring. The locus of non-singular points of X is open, and X itself is said to be nonsingular if every point $x \in X$ is non-singular. Given a singular projective variety X, one seeks a **desingularization**, i.e. a birational regular map $f: X_{ns} \to X$ such that X_{ns} is non-singular and projective. These can be difficult to find, but there is an intermediate notion of normality that does give rise to a canonical normalization $f: X_{nor} \to X$ that is a finite birational morphism.

Definition 7.1. The **Zariski cotangent space** to *X* at $p \in X$ is the vector space:

$$T_p^*(X) = m_p / m_p^2$$

Proposition 7.2. (a) The function $e(p) = \dim(T_p^*(X))$ is upper-semicontinuous.

(b) $e(p) \ge \dim(X)$, and $e(p) = \dim(X)$ on a non-empty open subset $U \subset X$.

Proof. We may prove (a) and (b) on each open subset of an open cover of X, so we may assume X is affine with $k[X] = k[x_1, ..., x_n]/\langle f_1, ..., f_m \rangle$. In that case,

$$\dim(T_p^*(X)) = n - \operatorname{rk}(\operatorname{Jac}(f_1, ..., f_m))(p)$$

where $Jac(f_1, ..., f_m)$ is the Jacobian matrix of partial derivatives:

$$\left(\frac{\partial f_i}{\partial x_j}\right)$$

We see this using $X \subset \mathbb{A}_k^n$ and the fact that $dx_i(p) = x_i - p_i \pmod{m_p^2}$ are a basis for $T_p^*(\mathbb{A}_k^n)$ while the kernel of the surjective restriction map $T_p^*(\mathbb{A}_k^n) \to T_p^*(X)$ is generated by:

$$df_i(p) = f_i(x) - f_i(p) = \sum_{j=1}^n \frac{\partial f_i}{\partial x_j}(p) dx_i(p) \pmod{m_p^2}$$

Since the dimension of the rank of a matrix with polynomial entries is lowersemicontinuous, it follows that e(p) is upper-semicontinuous. This gives (a).

Let $r = \dim(X)$. Then by Noether Normalization there are linear combinations $y_1, ..., y_r \in k[X]$ of the x_i such that $k[y_1, ..., y_r] \subset k[x_1, ..., x_n]/\langle f_1, ..., f_m \rangle$ is a finite module and $k(y_1, ..., y_r) \subset k(X)$ is a finite field extension. With some care this can be done so that the field extension is separable, and then by the theorem of the primitive element,

$$k(y_1, ..., y_r)[\alpha] = k(X)$$
 with minimal polynomial $g \in k(y_1, ..., y_r)[y_{r+1}]$

and we may assume the coefficients of g are polynomials in $y_1, ..., y_r$ and that g is an irreducible polynomial in $k[y_1, ..., y_{n+1}]$. This determines a birational map to a hypersurface $f: X - - > X(g) \subset \mathbb{A}_k^{n+1}$, which we saw in §6 induces an isomorphism between an open subset $V \subset X$ and $U \subset X(g)$. But it is clear that every hypersurface $X(g) \subset \mathbb{A}_k^{r+1}$ contains an open subset $U = X(g) - X(\nabla g)$ of points for which $\dim(T_p^*(X(g)) = r)$, and therefore X does as well. \Box

Remark. If $f: X \to Y$ is a regular map of varieties and f(x) = y, then:

$$f^*: \mathcal{O}_{Y,y} \to \mathcal{O}_{X,x}$$
 maps m_y to m_x and m_y^2 to m_x^2

so it induces a pull-back $f^*: T_y^* Y \to T_x^* X$ on Zariski cotangent spaces and, dually, a push-forward *derivative* map $df(x): T_{X,x} \to T_{Y,f(x)}$ on Zariski tangent spaces.

Proposition 7.3. For all $x \in X$, a set of generators of the vector space m_x/m_x^2 always lifts to a set of generators of the maximal ideal m_x .

Proof. Let $g_1, ..., g_s \in m_x$ be a lift of generators of the vector space m_x/m_x^2 . Then the cokernel of the $\mathcal{O}_{X,x}$ -module homomorphism

$$\stackrel{s}{\oplus} \mathcal{O}_{X,x} \to m_x; \quad (f_1, ..., f_s) \mapsto \sum f_i g_i$$

is a module N satisfying $m_x N = N$. By Nakayama's Lemma (see §5), there is an element $a = 1 + b \in \mathcal{O}_{X,x}$ with $b \in m_x$ such that aN = 0. But a is a unit in this local ring, so N = 0, as desired.

Definition 7.4. If $p \in X$ is non-singular, then a set of generators $g_1, ..., g_r \in m_p$ (reducing to a basis of T_p^*X) is called a *system of local parameters* for X near p.

A system of local parameters near x determines a rational map:

$$f: X - - > \mathbb{A}_k^r; \quad f(p) = 0$$

that is regular near p and induces isomorphisms $df(q) : T_q X \to T_{f(q)} \mathbb{A}_k^r$ on Zariski tangent spaces for all points q in a neighborhood of p. This is not a system of local *coordinates* near p (in the sense of differentiable manifolds), since the map f is finite-to-one, but it is the best we can do with rational functions.

Example. Looking at the factored (affine) cubic curve in Weierstrass form again:

$$C = X(f) \text{ for } f = y^2 - (x - \lambda_1)(x - \lambda_2)(x - \lambda_3)$$

we see that when $y_0 \neq 0$, then $x - x_0 \in m_{(x_0,y_0)}$ is a generator, since $df(x_0, y_0) = 2y_0 dy - (x_0 - \lambda_1)(x_0 - \lambda_2) dx - (x_0 - \lambda_1)(x_0 - \lambda_3) dx - (x_0 - \lambda_2)(x_0 - \lambda_3) dx$ and this parameter corresponds to the projection to the x-axis, while when $y_0 = 0$, then $x_0 = \lambda_i$ for some i and $y - y_0$ is a local parameter (projecting to the y-axis).

The following Theorem captures an important feature of regular local rings.

Theorem 7.4. If $p \in X$ is a non-singular point, then the local rings $\mathcal{O}_{X,Z}$ are unique factorization domains for all closed subvarieties $Z \subset X$ passing through p.

Proof. It suffices to prove that $\mathcal{O}_{X,p}$ is a UFD, since each $\mathcal{O}_{X,Z}$ is the localization of $\mathcal{O}_{X,p}$ at the prime ideal corresponding to Z, and a unique factorization domain localizes to a unique factorization domain. Next, complete the local ring $\mathcal{O}_{X,p}$ to:

$$\mathcal{O}_{X,p} = \lim_{\leftarrow} \mathcal{O}_{X,p} / m_p^n$$

and we appeal to the following commutative algebra facts:

- (a) $\mathcal{O}_{X,p}$ is isomorphic to the power series ring $k[[g_1, ..., g_r]]$, which is a UFD.
- (b) The map $i: \mathcal{O}_{X,p} \to \widehat{\mathcal{O}}_{X,p}$ is injective and flat; i.e. any injective map:

 $M \to N$ of finitely generated $\mathcal{O}_{X,p}$ -modules

remains injective after tensoring by $\mathcal{O}_{X,p}$.

We prove that $\mathcal{O}_{X,p}$ is a UFD via the following:

UFD Criterion. A Noetherian domain A is a UFD if and only if each of the ideals

 $(f:g)_A = \{h \in A \mid f \text{ divides } hg\}$ is principal

Proof. If A is a UFD and $f = u \prod p_i^{n_i}$ and $g = v \prod p_i^{m_i}$ with units u, v and primes p_i , then (f : g) = (e) for $e = \prod p_i^{\max\{n_i - m_i, 0\}}$. Conversely, suppose $f \in A$ is irreducible and f|gh. If (f : g) = (e), then $e, f, h \in (f : g) = (e)$, so:

 $eg = fa_1, f = a_2e$ and $h = a_3e$ for $a_1, a_2, a_3 \in A$

and then because f is irreducible, either a_2 is a unit and $h = a_3 e = a_3 a_2^{-1} f$, or else e is a unit and $g = e^{-1}a_1 f$, so f divides g or h, i.e. f is prime.

Returning to the proof of the Theorem, suppose $f, g \in \mathcal{O}_{X,p}$. Then:

$$0 \to (f:g) \to \mathcal{O}_{X,p} \xrightarrow{\cdot g} \mathcal{O}_{X,p}/(f)$$

is exact, and it follows from (b) above that:

$$(f:g)_{\widehat{O}_{X,p}} = (f:g)_{\mathcal{O}_{X,p}} \otimes \widetilde{\mathcal{O}}_{X,p}$$

But the former is a principal ideal by (a) (and the Criterion), and so:

 $(f:g)_{\widehat{O}_{X,p}}/\widehat{m}(f:g)_{\widehat{O}_{X,p}}$ has dimension one

On the other hand, if $I \subset \mathcal{O}_{X,p}$ is an ideal, then $I \otimes \widehat{\mathcal{O}}_{X,p}/\widehat{m} \cdot I \otimes \widehat{\mathcal{O}}_{X,p} = I/mI$ and so letting I = (f : g), we see that $\dim(I/mI) = 1$, and then by Nakayama's Lemma (as in Proposition 7.3) we conclude that (f : g) is a principal ideal.

Remark. A point $p \in X$ is called *locally factorial* if $\mathcal{O}_{X,p}$ is a UFD. We have proved above that non-singular points are locally factorial, but the reverse is not true.

Definition 7.5. A birational regular map $f : Y \to X$ of projective varieties is a **desingularization** of X if Y is non-singular.

It can be challenging to find desingularizations of projective varieties, and there is, in general, no canonical "smallest" desingularization of a singular variety X. There is, however, an important less-demanding property of a variety Y that does "partially desingularize" a projective variety with a canonical birational map.

Definition 7.6. A point $p \in X$ is **normal** if $\mathcal{O}_{X,p}$ is integrally closed in k(X). The variety X is itself normal if every point $p \in X$ is normal.

Remark. Recall that a subring $A \subset K$ of a field is *integrally closed* in K if each $\phi \in K$ that satisfies a monic polynomial equation $\phi^n + a_{n-1}\phi^{n-1} + \cdots + a_0 = 0$ with coefficients in A is itself an element of A. It is straightforward to see that a unique factorization domain is integrally closed in its field of fractions, and therefore that a non-singular (or locally factorial) point of a variety is a normal point. In dimension one, the reverse is also true, and a normal curve is a non-singular curve. However the two notions diverge in dimensions two and more.

Recall also that $\phi \in K$ is integral over A (satisfying a monic polynomial) if and only if $A[\phi]$ is a finite A-module, from which it follows that the set of integral elements over A, i.e. the **integral closure** \overline{A} of A, is a subring of K. Moreover, the ring \overline{A} is integrally closed in K, and if K is a finite extension of the fraction field k(A) of A, then the fraction field $k(\overline{A})$ of \overline{A} is equal to K. **Theorem 7.7.** Let X be an affine variety, and let $k(X) \subset k(Y)$ be a finite separable field extension. Then the integral closure $\overline{k[X]} \subset k(Y)$ of k[X] in k(Y) is:

- (a) Finitely generated as an algebra over k, and
- (b) A finite module over k[X] (with fraction field k(Y)).

Thus the integral closure yields a finite and surjective regular map $f: Y \to X$ of affine varieties. Moreover, Y is a normal variety.

Proof. Of course (b) implies (a), and it suffices to prove the Theorem when k[X] is a polynomial ring, since by Noether Normalization there is a finite (separable) module extension:

$$k[y_1, \dots, y_r] \subset k[X]$$

and so $\overline{k[y_1, ..., y_r]} = \overline{k[X]}$ in the field k(Y). Note that $A = k[y_1, ..., y_r]$ is integrally closed in its field of fractions $k(A) = k(y_1, ..., y_r)$, and k(Y) is a separable field extension of k(A), by assumption.

Consider now the trace pairing on k(Y), viewed as a vector space over k(A):

$$(a,b) = tr_{k(Y)/k(A)}(ab)$$

Separability says this is non-degenerate. Since integral closure commutes with localizing, we have:

$$(\overline{A})_S = \overline{A_S} = k(Y)$$
, for the multiplicative set $S = A - \{0\}$

and so every element $\phi \in k(Y)$ is of the form $\phi = \alpha \cdot \psi$ for $\alpha \in \overline{A}$ and $\psi \in k(A)$. Thus there is a basis for k(Y) of vectors:

$$\alpha_1, ..., \alpha_n \in A$$
, with dual basis $\beta_1, ..., \beta_n \in k(Y)$

with respect to the trace. The claim is that \overline{A} is a submodule of the free A-module:

$$\beta_1 A + \dots + \beta_n A$$

and therefore a finite A-module. To see this, expand $\alpha \in \overline{A}$ in terms of the β basis $\alpha = \sum \phi_i \beta_i \in \overline{A}$ and solve for the coefficients ϕ_i via:

$$\phi_i = (\alpha_i, \alpha) = tr(\alpha_i \cdot \alpha)$$

But $\alpha_i \cdot \alpha \in \overline{A}$ satisfies a monic polynomial with coefficients in A, so all the roots of the minimal polynomial are also integral over A, and the *coefficients* of the minimal polynomial are both integral over A and elements of the field k(A). Since A is integrally closed in k(A), it follows that $\phi_i = tr(\alpha_i \cdot \alpha) \in A$, as desired. \Box

Corollary 7.8. For any affine variety X, the integral closure $\overline{k[X]} \subset k(X)$ of X in its own field of fractions (canonically) defines a normal affine variety X_{nor} with $k[X_{nor}] = \overline{k[X]}$ and a birational finite regular map:

 $f: X_{nor} \to X$

Corollary 7.9. The normal points of a variety X are an open subset of X.

Proof. From Corollary 7.8, the normal points *contain* an open subset of X. Suppose $p \in X$ is normal and $p \in U$ is an open neighborhood. Consider the normalization map $f: U_{norm} \to U$, Then because $\mathcal{O}_{X,p} = \mathcal{O}_{U,p}$ is integrally closed in k(X), it follows that the generators $b_1, ..., b_n$ of the module $k[U_{norm}]$ over k[U] are elements of $\mathcal{O}_{U,p}$, and then it follows that $b_1, ..., b_n \in k[U]_f$ for some $f \notin m_p$, and $\overline{k[U]_f} = k[U_{norm}]_f = k[U]_f$, so $U - X(f) \subset U$ is a normal nbhd of $p \in X$. \Box Let X be an affine variety. Then the normalization $f: X_{norm} \to X$ satisfies the: **Universal Property.** Every finite dominant regular map $g: Y \to X$ from a normal affine variety to X factors uniquely through a finite map to the normalization:

$$g_{norm}: Y \to X_{norm} \to X$$

Indeed, if $k[X] \subset k[Y]$ and $k[Y] \subset k(Y)$ is integrally closed, then integral elements over k[X] in k(X) are all contained in k[Y]. So $k[X] \subset \overline{k[X]} \subset k[Y]$.

Observation. Every variety X admits a birational finite map $f : X_{norm} \to X$ from a normal variety that is uniquely determined by the universal property.

"**Proof**". Glue the universal affine normalizations of an open affine cover along the normalizations of their intersections, using the universal property.

Proposition 7.10. The normalization of a projective variety is projective.

Proof. Given $X = \max (A_{\bullet})$, note that if we choose $l \in A_1 - \{0\}$, then:

$$k(X) = k(A_{\bullet(l)})$$
 and $k(X) \subset k(X)[l] \subset k(A_{\bullet}) = k(C(X))$

is an intermediate graded polynomial ring in one variable between the field of rational functions on X and on the affine cone C(X). Since the polynomial ring k(X)[l] is integrally closed and graded, the integral closure of $k[C(X)] = A_{\bullet}$ is a finitely generated graded subring:

$$B_{\bullet} = \overline{A_{\bullet}} \subset k(X)[l]$$

with $B_0 = A_0 = k$. The catch is that B_{\bullet} need not be generated by B_1 . If it is, then B_{\bullet} is said to be **projectively normal**, and $X_{norm} = \max \operatorname{proj}(B_{\bullet})$ is the (projective) normalization of X. In general, however, B_{\bullet} is generated by B_m for some $m \geq 1$, and then recalling that $X = \max \operatorname{proj}(A_{\bullet}) = \max \operatorname{proj}(A_{m\bullet})$, we have $B_{m\bullet} = \overline{A_{m\bullet}}$ and $X_{norm} = \max \operatorname{proj}(B_{m\bullet})$. Geometrically, this corresponds to reembedding $X \subset \mathbb{P}^n$ in $\mathbb{P}^{\binom{n+m}{m}-1}$ via the *m*-uple embedding, and then normalizing the affine cone over the reembedded X to obtain a cone whose coordinate ring is generated in degree one.

Finally, we look at integrally closed local rings in dimension one.

Proposition 7.11. Suppose (A, \mathfrak{m}) is an integrally closed local Noetherian domain of dimension one with residue field $k = A/\mathfrak{m}$ (not necessarily algebraically closed). Then the maximal ideal \mathfrak{m} is a principal ideal, i.e. (A, \mathfrak{m}) is a DVR.

Proof. Choose an element $a \in \mathfrak{m} - \mathfrak{m}^2$. Because (A, \mathfrak{m}) has dimension one,

A/(a) is a finite-dimensional k-vector space

and so in particular, $\mathfrak{m}^n \subset (a)$ for some *n*. Let *n* be minimal. If n = 1, we're done. Otherwise, choose $b \in \mathfrak{m}^{n-1}$ such that $b \notin (a)$, and consider the element:

$$x = b/a \in k(A)$$

Then $x \notin A$, so x is not integral over A (since we assumed A was integrally closed). But $\mathfrak{m}x \subset A$ since $\mathfrak{m}b \subset \mathfrak{m}^n \subset (a)$.

If $\mathfrak{m}x \subset \mathfrak{m}$, then by the same argument as in the proof of Nakayama's Lemma, we let $m_1, ..., m_r$ be generators of \mathfrak{m} and solve: $xm_i = \sum_{j=1}^r a_{ij}m_j$ to get an operator $(xI_r - A)$ that annihilates \mathfrak{m} . It follows that $0 = \det(xI_r - A) \in k(A)$. But this is a monic polynomial in x, which is not allowed. So $1 \in \mathfrak{m}x$ and x^{-1} generates \mathfrak{m} . \Box

Corollary 7.12. If X is a normal variety and $Z \subset X$ is a closed irreducible subvariety of codimension one, then $\mathcal{O}_{X,Z}$ is a DVR with fraction field k(X).

6