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7. Local Properties.

A point x ∈ X of a variety over k is xgular if dimk(mx/m
2
x) = dim(X), i.e.

if the stalk OX,x of the sheaf of regular functions is a regular local ring. The
locus of non-singular points of X is open, and X itself is said to be nonsingular
if every point x ∈ X is non-singular. Given a singular projective variety X, one
seeks a desingularization, i.e. a birational regular map f : Xns → X such that
Xns is non-singular and projective. These can be difficult to find, but there is an
intermediate notion of normality that does give rise to a canonical normalization
f : Xnor → X that is a finite birational morphism.

Definition 7.1. The Zariski cotangent space to X at p ∈ X is the vector space:

T ∗p (X) = mp/m
2
p

Proposition 7.2. (a) The function e(p) = dim(T ∗p (X)) is upper-semicontinuous.

(b) e(p) ≥ dim(X), and e(p) = dim(X) on a non-empty open subset U ⊂ X.

Proof. We may prove (a) and (b) on each open subset of an open cover of X,
so we may assume X is affine with k[X] = k[x1, ..., xn]/〈f1, ..., fm〉. In that case,

dim(T ∗p (X)) = n− rk(Jac(f1, ..., fm))(p)

where Jac(f1, ..., fm) is the Jacobian matrix of partial derivatives:(
∂fi
∂xj

)
We see this using X ⊂ An

k and the fact that dxi(p) = xi − pi (mod m2
p) are a basis

for T ∗p (An
k ) while the kernel of the surjective restriction map T ∗p (An

k ) → T ∗p (X) is
generated by:

dfi(p) = fi(x)− fi(p) =

n∑
j=1

∂fi
∂xj

(p)dxi(p) (mod m2
p)

Since the dimension of the rank of a matrix with polynomial entries is lower-
semicontinuous, it follows that e(p) is upper-semicontinuous. This gives (a).

Let r = dim(X). Then by Noether Normalization there are linear combinations
y1, ..., yr ∈ k[X] of the xi such that k[y1, ..., yr] ⊂ k[x1, ..., xn]/〈f1, ..., fm〉 is a finite
module and k(y1, ..., yr) ⊂ k(X) is a finite field extension. With some care this can
be done so that the field extension is separable, and then by the theorem of the
primitive element,

k(y1, ...., yr)[α] = k(X) with minimal polynomial g ∈ k(y1, ..., yr)[yr+1]

and we may assume the coefficients of g are polynomials in y1, ..., yr and that g
is an irreducible polynomial in k[y1, ..., yn+1]. This determines a birational map
to a hypersurface f : X − − > X(g) ⊂ An+1

k , which we saw in §6 induces an
isomorphism between an open subset V ⊂ X and U ⊂ X(g). But it is clear that
every hypersurface X(g) ⊂ Ar+1

k contains an open subset U = X(g) − X(∇g) of
points for which dim(T ∗p (X(g)) = r, and therefore X does as well. �
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Remark. If f : X → Y is a regular map of varieties and f(x) = y, then:

f∗ : OY,y → OX,x maps my to mx and m2
y to m2

x

so it induces a pull-back f∗ : T ∗y Y → T ∗xX on Zariski cotangent spaces and, dually,
a push-forward derivative map df(x) : TX,x → TY,f(x) on Zariski tangent spaces.

Proposition 7.3. For all x ∈ X, a set of generators of the vector space mx/m
2
x

always lifts to a set of generators of the maximal ideal mx.

Proof. Let g1, ..., gs ∈ mx be a lift of generators of the vector space mx/m
2
x.

Then the cokernel of the OX,x-module homomorphism

s
⊕ OX,x → mx; (f1, ..., fs) 7→

∑
figi

is a module N satisfying mxN = N . By Nakayama’s Lemma (see §5), there is an
element a = 1 + b ∈ OX,x with b ∈ mx such that aN = 0. But a is a unit in this
local ring, so N = 0, as desired. �

Definition 7.4. If p ∈ X is non-singular, then a set of generators g1, ..., gr ∈ mp

(reducing to a basis of T ∗pX) is called a system of local parameters for X near p.

A system of local parameters near x determines a rational map:

f : X −− > Ar
k; f(p) = 0

that is regular near p and induces isomorphisms df(q) : TqX → Tf(q)Ar
k on Zariski

tangent spaces for all points q in a neighborhood of p. This is not a system of
local coordinates near p (in the sense of differentiable manifolds), since the map f
is finite-to-one, but it is the best we can do with rational functions.

Example. Looking at the factored (affine) cubic curve in Weierstrass form again:

C = X(f) for f = y2 − (x− λ1)(x− λ2)(x− λ3)

we see that when y0 6= 0, then x− x0 ∈ m(x0,y0) is a generator, since

df(x0, y0) = 2y0dy−(x0−λ1)(x0−λ2)dx−(x0−λ1)(x0−λ3)dx−(x0−λ2)(x0−λ3)dx

and this parameter corresponds to the projection to the x-axis, while when y0 = 0,
then x0 = λi for some i and y − y0 is a local parameter (projecting to the y-axis).

The following Theorem captures an important feature of regular local rings.

Theorem 7.4. If p ∈ X is a non-singular point, then the local rings OX,Z are
unique factorization domains for all closed subvarieties Z ⊂ X passing through p.

Proof. It suffices to prove thatOX,p is a UFD, since eachOX,Z is the localization
of OX,p at the prime ideal corresponding to Z, and a unique factorization domain
localizes to a unique factorization domain. Next, complete the local ring OX,p to:

ÔX,p = lim
←
OX,p/m

n
p

and we appeal to the following commutative algebra facts:

(a) ÔX,p is isomorphic to the power series ring k[[g1, ..., gr]], which is a UFD.

(b) The map i : OX,p → ÔX,p is injective and flat; i.e. any injective map:

M → N of finitely generated OX,p-modules

remains injective after tensoring by ÔX,p.
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We prove that OX,p is a UFD via the following:

UFD Criterion. A Noetherian domain A is a UFD if and only if each of the ideals

(f : g)A = {h ∈ A | f divides hg} is principal

Proof. If A is a UFD and f = u
∏
pni
i and g = v

∏
pmi
i with units u, v and

primes pi, then (f : g) = (e) for e =
∏
p
max{ni−mi,0}
i . Conversely, suppose f ∈ A

is irreducible and f |gh. If (f : g) = (e), then e, f, h ∈ (f : g) = (e), so:

eg = fa1, f = a2e and h = a3e for a1, a2, a3 ∈ A

and then because f is irreducible, either a2 is a unit and h = a3e = a3a
−1
2 f , or else

e is a unit and g = e−1a1f , so f divides g or h, i.e. f is prime. �

Returning to the proof of the Theorem, suppose f, g ∈ OX,p. Then:

0→ (f : g)→ OX,p
·g→ OX,p/(f)

is exact, and it follows from (b) above that:

(f : g)ÔX,p
= (f : g)OX,p

⊗ ÔX,p

But the former is a principal ideal by (a) (and the Criterion), and so:

(f : g)ÔX,p
/m̂(f : g)ÔX,p

has dimension one

On the other hand, if I ⊂ OX,p is an ideal, then I ⊗ ÔX,p/m̂ · I ⊗ ÔX,p = I/mI
and so letting I = (f : g), we see that dim(I/mI) = 1, and then by Nakayama’s
Lemma (as in Proposition 7.3) we conclude that (f : g) is a principal ideal.

Remark. A point p ∈ X is called locally factorial if OX,p is a UFD. We have proved
above that non-singular points are locally factorial, but the reverse is not true.

Definition 7.5. A birational regular map f : Y → X of projective varieties is a
desingularization of X if Y is non-singular.

It can be challenging to find desingularizations of projective varieties, and there
is, in general, no canonical “smallest” desingularization of a singular variety X.
There is, however, an important less-demanding property of a variety Y that does
“partially desingularize” a projective variety with a canonical birational map.

Definition 7.6. A point p ∈ X is normal if OX,p is integrally closed in k(X).
The variety X is itself normal if every point p ∈ X is normal.

Remark. Recall that a subring A ⊂ K of a field is integrally closed in K if each
φ ∈ K that satisfies a monic polynomial equation φn+an−1φ

n−1+ · · ·+a0 = 0 with
coefficients in A is itself an element of A. It is straightforward to see that a unique
factorization domain is integrally closed in its field of fractions, and therefore that a
non-singular (or locally factorial) point of a variety is a normal point. In dimension
one, the reverse is also true, and a normal curve is a non-singular curve. However
the two notions diverge in dimensions two and more.

Recall also that φ ∈ K is integral over A (satisfying a monic polynomial) if
and only if A[φ] is a finite A-module, from which it follows that the set of integral
elements over A, i.e. the integral closure A of A, is a subring of K. Moreover,
the ring A is integrally closed in K, and if K is a finite extension of the fraction
field k(A) of A, then the fraction field k(A) of A is equal to K.
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Theorem 7.7. Let X be an affine variety, and let k(X) ⊂ k(Y ) be a finite separable

field extension. Then the integral closure k[X] ⊂ k(Y ) of k[X] in k(Y ) is:

(a) Finitely generated as an algebra over k, and

(b) A finite module over k[X] (with fraction field k(Y )).

Thus the integral closure yields a finite and surjective regular map f : Y → X
of affine varieties. Moreover, Y is a normal variety.

Proof. Of course (b) implies (a), and it suffices to prove the Theorem when k[X]
is a polynomial ring, since by Noether Normalization there is a finite (separable)
module extension:

k[y1, ..., yr] ⊂ k[X]

and so k[y1, ..., yr] = k[X] in the field k(Y ). Note that A = k[y1, ..., yr] is integrally
closed in its field of fractions k(A) = k(y1, ..., yr), and k(Y ) is a separable field
extension of k(A), by assumption.

Consider now the trace pairing on k(Y ), viewed as a vector space over k(A):

(a, b) = trk(Y )/k(A)(ab)

Separability says this is non-degenerate. Since integral closure commutes with
localizing, we have:

(A)S = AS = k(Y ), for the multiplicative set S = A− {0}
and so every element φ ∈ k(Y ) is of the form φ = α · ψ for α ∈ A and ψ ∈ k(A).
Thus there is a basis for k(Y ) of vectors:

α1, ...., αn ∈ A, with dual basis β1, ..., βn ∈ k(Y )

with respect to the trace. The claim is that A is a submodule of the free A-module:

β1A+ · · ·+ βnA

and therefore a finite A-module. To see this, expand α ∈ A in terms of the β basis
α =

∑
φiβi ∈ A and solve for the coefficients φi via:

φi = (αi, α) = tr(αi · α)

But αi · α ∈ A satisfies a monic polynomial with coefficients in A, so all the roots
of the minimal polynomial are also integral over A, and the coefficients of the
minimal polynomial are both integral over A and elements of the field k(A). Since
A is integrally closed in k(A), it follows that φi = tr(αi · α) ∈ A, as desired. �

Corollary 7.8. For any affine variety X, the integral closure k[X] ⊂ k(X) of X
in its own field of fractions (canonically) defines a normal affine variety Xnor with

k[Xnor] = k[X] and a birational finite regular map:

f : Xnor → X

Corollary 7.9. The normal points of a variety X are an open subset of X.

Proof. From Corollary 7.8, the normal points contain an open subset of X.
Suppose p ∈ X is normal and p ∈ U is an open neighborhood. Consider the
normalization map f : Unorm → U , Then because OX,p = OU,p is integrally closed
in k(X), it follows that the generators b1, ..., bn of the module k[Unorm] over k[U ]
are elements of OU,p, and then it follows that b1, ...., bn ∈ k[U ]f for some f 6∈ mp,

and k[U ]f = k[Unorm]f = k[U ]f , so U −X(f) ⊂ U is a normal nbhd of p ∈ X. �
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Let X be an affine variety. Then the normalization f : Xnorm → X satisfies the:

Universal Property. Every finite dominant regular map g : Y → X from a normal
affine variety to X factors uniquely through a finite map to the normalization:

gnorm : Y → Xnorm → X

Indeed, if k[X] ⊂ k[Y ] and k[Y ] ⊂ k(Y ) is integrally closed, then integral elements

over k[X] in k(X) are all contained in k[Y ]. So k[X] ⊂ k[X] ⊂ k[Y ].

Observation. Every variety X admits a birational finite map f : Xnorm → X
from a normal variety that is uniquely determined by the universal property.

“Proof”. Glue the universal affine normalizations of an open affine cover along
the normalizations of their intersections, using the universal property.

Proposition 7.10. The normalization of a projective variety is projective.

Proof. Given X = maxproj(A•), note that if we choose l ∈ A1 − {0}, then:

k(X) = k(A•(l)) and k(X) ⊂ k(X)[l] ⊂ k(A•) = k(C(X))

is an intermediate graded polynomial ring in one variable between the field of
rational functions on X and on the affine cone C(X). Since the polynomial ring
k(X)[l] is integrally closed and graded, the integral closure of k[C(X)] = A• is a
finitely generated graded subring:

B• = A• ⊂ k(X)[l]

with B0 = A0 = k. The catch is that B• need not be generated by B1. If it is,
then B• is said to be projectively normal, and Xnorm = maxproj(B•) is the
(projective) normalization of X. In general, however, B• is generated by Bm for
some m ≥ 1, and then recalling that X = maxproj(A•) = maxproj(Am•), we
have Bm• = Am• and Xnorm = maxproj(Bm•). Geometrically, this corresponds to

reembedding X ⊂ Pn in P(n+m
m )−1) via the m-uple embedding, and then normalizing

the affine cone over the reembedded X to obtain a cone whose coordinate ring is
generated in degree one.

Finally, we look at integrally closed local rings in dimension one.

Proposition 7.11. Suppose (A,m) is an integrally closed local Noetherian domain
of dimension one with residue field k = A/m (not necessarily algebraically closed).
Then the maximal ideal m is a principal ideal, i.e. (A,m) is a DVR.

Proof. Choose an element a ∈ m−m2. Because (A,m) has dimension one,

A/(a) is a finite-dimensional k-vector space

and so in particular, mn ⊂ (a) for some n. Let n be minimal. If n = 1, we’re done.
Otherwise, choose b ∈ mn−1 such that b 6∈ (a), and consider the element:

x = b/a ∈ k(A)

Then x 6∈ A, so x is not integral over A (since we assumed A was integrally closed).
But mx ⊂ A since mb ⊂ mn ⊂ (a).

If mx ⊂ m, then by the same argument as in the proof of Nakayama’s Lemma, we
let m1, ...,mr be generators of m and solve: xmi =

∑r
j=1 aijmj to get an operator

(xIr−A) that annihilates m. It follows that 0 = det(xIr−A) ∈ k(A). But this is a
monic polynomial in x, which is not allowed. So 1 ∈ mx and x−1 generates m. �



6

Corollary 7.12. If X is a normal variety and Z ⊂ X is a closed irreducible
subvariety of codimension one, then OX,Z is a DVR with fraction field k(X).


