Algebraic Geometry I (Math 6130)

Utah/Fall 2020

1. Algebraic Sets

A commutative ring A with 1 is Noetherian if for every chain of ideals:

$$
I_{1} \subset I_{2} \subset \cdots \subset A
$$

there is an n such that $I_{n}=I_{n+1}=\cdots=\bigcup_{k=1}^{\infty} I_{k}$ (i.e. the chain stabilizes).
Lemma 1.1. A is Noetherian if and only if every ideal $I \subset A$ is finitely generated.
Proof. Exercise.

- All fields k are Noetherian.
- Any PID (e.g. \mathbb{Z} or $k[x]$) is Noetherian.

Lemma 1.2. If A is Noetherian and M is a finitely-generated A-module, then every submodule $N \subset M$ is also finitely generated.

Proof. If M is finitely generated, there is a surjection $q: A^{n} \rightarrow M$, and if the submodule $q^{-1}(N) \subset A^{n}$ is a finitely generated A-module, then N is also finitely generated (by the images of generators of $q^{-1}(N)$). Thus it suffices to prove the lemma for free modules A^{n}. But this follows by induction on n via exact sequences:

$$
0 \rightarrow A^{n-1} \rightarrow A^{n} \rightarrow A \rightarrow 0
$$

Hilbert Basis Theorem. If A is Noetherian, then $A[x]$ is Noetherian.
Proof. Let $J \subset A[x]$ be an ideal, and consider the ideals $I_{d} \subset A$ of leading coefficients of polynomials $f(x) \in J$ of degree d. That is, $a \in I_{d}$ if and only if there is a polynomial $f(x) \in J$ of the form $a x^{d}+$ lower order "representing" a. The ideals I_{d} form an ascending chain that stabilizes at some I_{n} since A is Noetherian. Each of the ideals $I_{0}, I_{1}, \ldots, I_{n}$ is finitely generated by Lemma 1.1 , and then J itself is generated by any choice of $n+1$ collections of polynomials in J of degrees $0, \ldots, n$ that represent generators of each of the ideals I_{0}, \ldots, I_{n}.

Corollary 1.3. The polynomial rings $k\left[x_{1}, \ldots, x_{n}\right]$ are Noetherian.
Example. Let $X \subset k^{n}$ be an arbitrary subset. Then:

$$
I(X)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right] \mid f(x)=0 \text { for all } x \in X\right\}
$$

is an ideal, hence finitely generated by Corollary 1.3.
Let $X=\{(0,0),(1,0),(0,1)\} \subset k^{2}$ and view $k\left[x_{1}, x_{2}\right]$ as $k\left[x_{1}\right]\left[x_{2}\right]$. Let $J=I(X)$. Then:

$$
I_{0}=\left\langle x_{1}^{2}-x_{1}\right\rangle, I_{1}=\left\langle x_{1}\right\rangle \text { and } I_{2}=\langle 1\rangle
$$

and the polynomials $x_{1}^{2}-x_{1}, x_{1} x_{2}, x_{2}^{2}-x_{2} \in J$ generate J, as in the Basis Theorem.
Together with the definition of $X(I)$ from $\S 0$, we have mappings:

$$
\begin{aligned}
& \left.X:\left\{\text { ideals } I \subset k\left[x_{1}, \ldots, x_{n}\right]\right)\right\} \rightarrow\left\{\text { subsets } X \subset k^{n}\right\} \text { and } \\
& \left.I:\left\{\text { subsets } X \subset k^{n}\right\} \rightarrow\left\{\text { ideals } I \subset k\left[x_{1}, \ldots, x_{n}\right]\right)\right\}
\end{aligned}
$$

Definition 1.4. (a) X is algebraic if $X=X(I)$ for some $I \subset k\left[x_{1}, \ldots, x_{n}\right]$.
(b) I is geometric if $I=I(X)$ for some subset $X \subset k^{n}$.

Simple Observations. (i) If $I \subseteq J$, then $X(I) \supseteq X(J)$.
(ii) If $X \subseteq Y$, then $I(X) \supseteq I(Y)$.
(iii) $X \subseteq X(I(X))$ and $I \subseteq I(X(I))$.

Proposition 1.5. The algebraic sets $X(I) \subset k^{n}$ are the closed sets of a topology. This is the Zariski Topology on k^{n}..

Proof. We need to show that:
(i) \emptyset and k^{n} are closed sets.
(ii) If X and Y are closed sets, then $X \cup Y$ is a closed set.
(iii) If $X_{\lambda}, \lambda \in \Lambda$ is any collection of closed sets, then $\cap_{\lambda} X_{\lambda}$ is a closed set.

These follow immediately from the corresponding properties of ideals.
(i) $\emptyset=X(\langle 1\rangle)$ and $k^{n}=X(\langle 0\rangle)$.
(ii) If $X=X(I)$ and $Y=X(J)$, then $X \cup Y=X(I \cdot J)$.
(iii) If $X_{\lambda}=X\left(I_{\lambda}\right)$ for $\lambda \in \Lambda$, then $\cap X_{\lambda}=X\left(\sum I_{\lambda}\right)$.

Remark. It's often the open sets $U=X^{c}$ that are more natural to think about. When we study schemes, we'll see there are many closed subschemes of k^{n} with the same underlying set X, but only one open subscheme with the underlying set U.
Example. (a) Points $a \in k^{n}$ are always closed, via the maximal ideals:

$$
\{a\}=X\left(\left\langle x_{1}-a_{1}, \ldots ., x_{n}-a_{n}\right\rangle\right)
$$

so finite sets are also closed. These are the only closed subsets of k (other than k). In k^{2}, we also have the plane curves $X=X\left(f\left(x_{1}, x_{2}\right)\right)$ which are never finite sets when k is algebraically closed.
(b) By the Noetherian property and observation (ii) above, any descending chain:

$$
X_{1} \supseteq X_{2} \supseteq X_{2} \supseteq \cdots
$$

of closed sets of k^{n} eventually stabilizes. Complementarily, any ascending chain:

$$
U_{1} \subseteq U_{2} \subseteq U_{3} \subseteq \cdots
$$

of open subsets of k^{n} eventually stabilizes.
Suppose now that $P \subset k\left[x_{1}, \ldots, x_{n}\right]$ is a prime ideal and let:

- $X=X(P) \subset k^{n}$
- $k[X]=k\left[x_{1}, \ldots ., x_{n}\right] / P$ (the integral domain of regular functions on X)
- $k(X)=$ field of fractions of $k[X]$ (the field of rational functions on X)

Let d be the transcendence degree of the field extension $k \subset k(X)$. Then:
Noether Normalization. There are algebraically independent regular functions $y_{1}, \ldots, y_{d} \in k[X]$ such that $k[X]$ is finitely generated as a $k\left[y_{1}, \ldots, y_{d}\right]$-module.

Proof. We will prove this under the (unnecessary) assumption that k is infinite. With this assumption, we can in fact choose:

$$
y_{i}=\sum_{j=1}^{n} a_{i, j} x_{j} \text { for } i=1, \ldots, d \text { and } a_{i, j} \in k
$$

to be linear combinations of the images of the coordinate functions x_{i} in $k[X]$.

If $n=d$, then $P=0$ (otherwise $k(X)$ would have transcendence degree $<d$). Otherwise, $n<d$ and $x_{1}, \ldots, x_{n} \in k[X]$ satisfy a relation $f\left(x_{1}, \ldots, x_{n}\right)=0$ for some polynomial $f \in P$ of degree $m>0$. If

$$
f=a x_{n}^{m}+\left\{\text { lower order in } x_{n}\right\}
$$

for some non-zero constant $a \in k$, then $k[X]$ is generated by $1, x_{n}, \ldots, x_{n}^{m-1}$ as a module over the integral domain $k\left[x_{1}, \ldots, x_{n-1}\right] / P \cap k\left[x_{1}, \ldots, x_{n-1}\right]$.

In general f will not have this form, but we can change variables to put it in this form as follows. Let $y_{i}=x_{i}+a_{i} x_{n}$ for $i=1, \ldots, n-1$. Then as a function of $y_{1}, y_{2}, \ldots, y_{n-1}, x_{n}$ we have

$$
f=g\left(a_{1}, \ldots, a_{n-1}\right) x_{n}^{m}+\left\{\text { lower order in } x_{n}\right\}
$$

where g is a non-zero polynomial in the a_{i}. Because k is infinite, we can choose the constants a_{1}, \ldots, a_{n-1} so that $g\left(a_{1}, \ldots, a_{n-1}\right) \neq 0$ and then in terms of the new coordinates $y_{1}, \ldots, y_{n-1}, x_{n}$, the relation f does have the desired form, and so $k[X]$ is finitely generated as a module over $k[Y]=k\left[y_{1}, \ldots, y_{n-1}\right] / P \cap k\left[y_{1}, \ldots, y_{n-1}\right]$ from which it follows that $k(Y)$ is a finite field extension of $k(Y)$, so they have the same transcendence degree over k, and then we can proceed by induction on n.
Example. Consider the prime ideal $P=\langle x y-1\rangle \subset k[x, y]$. Then:

- $X=X(P)$ is the hyperbola $\left\{\left(t, t^{-1}\right) \mid t \in k^{*}\right\}$.
- $k\left[x, x^{-1}\right]$ is not finitely generated as a $k[x]$-module, but
- $k\left[x, x^{-1}\right]$ is generated by 1 and x as a $k\left[x+x^{-1}\right]$-module.

Hilbert Nullstellensatz: If k is infinite and $m \subset k\left[x_{1}, \ldots, x_{n}\right]$ is a maximal ideal, then $k \subset K=k\left[x_{1}, \ldots, x_{n}\right] / m$ is a finite field extension.

Proof. If not, then $k \subset K$ is a field extension of transcendence degree $d>0$, and then by by Noether Normalization, we have:

$$
k \subset k\left[y_{1}, \ldots, y_{d}\right] \subset K
$$

where K is a finitely generated $k\left[y_{1}, \ldots, y_{d}\right]$-module. But this is impossible when K is a field. For example, by Lemma 1.2 and $1.3, k\left[y_{1}, y_{1}^{-1}, \ldots, y_{d}\right] \subset K$ would be a finitely generated $k\left[y_{1}, \ldots, y_{d}\right]$-module, which it isn't.
Corollary 1.6. If $k=\bar{k}$, then $m_{a}, a \in k^{n}$ are the maximal ideals in $k\left[x_{1}, \ldots, x_{n}\right]$.
Proof. Let $m \subset k\left[x_{1}, \ldots, x_{n}\right]$ be a maximal ideal. Then by the Nullstellensatz,

$$
k \subset k\left[x_{1}, \ldots, x_{n}\right] \rightarrow k\left[x_{1}, \ldots, x_{n}\right] / m=K
$$

is a finite field extension of k, hence equal to k. Thus, m is the kernel of the map:

$$
x_{i} \mapsto a_{i} \in K=k ; i=1, \ldots, n
$$

i.e. m is the maximal ideal $m_{a}=\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle$.

Corollary 1.7. If $X(I)=\emptyset$ and $k=\bar{k}$, then $1 \in I$.
Proof. If $X(I)=\emptyset$, then by Corollary $1.6, I$ is contained in no maximal ideal, hence $1 \in I$, so if $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$, there are polynomials g_{1}, \ldots, g_{m} so that:

$$
1=\sum_{i=1}^{m} g_{i} f_{i}
$$

(though finding the g_{i} can be challenging).

Definition 1.8. If $I \subset A$ is an ideal, then the radical of I is the ideal:

$$
\operatorname{rad}(I)=\left\{f \in A \mid f^{n} \in I \text { for some } n>0\right\}
$$

Note that if $I \subset k\left[x_{1}, \ldots, x_{n}\right]$, then $I \subseteq \operatorname{rad}(I) \subseteq I(X(I))$.
The following Corollary characterizes geometric ideals in $k\left[x_{1}, \ldots, x_{n}\right]$ when $k=\bar{k}$.
Corollary 1.9. If $k=\bar{k}$, then $I(X(I))=\operatorname{rad}(I)$.
Proof. Let $I=\left\langle f_{1}, . ., f_{m}\right\rangle$ and suppose $f \in I(X(I))$ and consider the ideal:

$$
J=\left\langle f_{1}, \ldots, f_{m}, f x_{n+1}-1\right\rangle \subset k\left[x_{1}, \ldots, x_{n+1}\right]
$$

Then by construction, $X(J)=\emptyset$, so $1 \in J$ by Corollary 1.7 and

$$
1=\sum_{i=1}^{m} g_{i} f_{i}+g \cdot\left(f x_{n+1}-1\right)
$$

for some $g_{1}, \ldots, g_{m}, g \in k\left[x_{1}, \ldots, x_{n+1}\right]$. Now formally substitute f^{-1} for x_{n+1}. Then:

$$
1=\sum_{i=1}^{m} g_{i}\left(x_{1}, \ldots, x_{n}, f^{-1}\right) f_{i}
$$

and multiplying through by f^{N} for large enough N gives:

$$
f^{N}=\sum h_{i} f_{i} \in I \text { for } h_{i}=f^{N} g_{i}\left(x_{1}, \ldots, x_{n}, f^{-1}\right) \in k\left[x_{1}, \ldots, x_{n}\right]
$$

Thus $\operatorname{rad}(I) \subseteq I(X(I))$.
Definition 1.10. An ideal I is radical if $\operatorname{rad}(I)=I$.
Example. If I is any ideal, then $\operatorname{rad}(\operatorname{rad}(I))=\operatorname{rad}(I)$, so $\operatorname{rad}(I)$ is radical.
Corollary 1.11. If $k=\bar{k}$, geometric ideals are the same as radical ideals.
Proof. Clearly every ideal of the form $I(X)$ for any $X \subset k^{n}$ is a radical ideal. On the the other hand, if I is radical, then $I=I(X(I))$, so I is geometric.

Notice also that if $I \neq J$ are radical ideals, then $X(I) \neq X(J)$. So:
$X:\left\{\right.$ radical ideals $\left.I \subset k\left[x_{1}, \ldots, x_{n}\right]\right\} \rightarrow\left\{\right.$ algebraic (closed) subsets $\left.X \subset k^{n}\right\}$ is a bijection, with inverse I (this follows from $X(I(X(I))=X(\operatorname{rad}(I))=X(I))$.

Note that a prime ideal P is also a radical ideal, so $I(X(P))=P($ when $k=\bar{k})$. The closed sets $X(P)$ corresponding to prime ideals are "irreducible."
Definition 1.12. A closed set $X \subset k^{n}$ in the Zariski topology is reducible if:

$$
X=X_{1} \cup X_{2}
$$

for two nonempty closed subsets $X_{1} \subset X$ and $X_{2} \subset X$ (properly contained in X). If no such pair of closed subsets exists, then X is irreducible.
Announcement. Unless otherwise indicated, we will assume $k=\bar{k}$ from now on.
Proposition 1.13. (a) If $P \subset k\left[x_{1}, \ldots, x_{n}\right]$ is a prime ideal then $X(P)$ is irreducible.
(b) If $X \subset k^{n}$ is an irreducible closed set, then $I(X)$ is prime.
(c) Every closed set $X \subset k^{n}$ is a union of finitely many irreducible closed sets, and the minimal such union: $X=X_{1} \cup \cdots \cup X_{m}$ (with $X_{i} \not \subset X-X_{i}$) is uniquely determined, up to permuting the irreducible components X_{1}, \ldots, X_{m}.

Proof. (a) Let I be a radical ideal. If $X(I)$ is reducible, let $X=X_{1} \cup X_{2}$ as in Definition 1.12 and choose $x_{1} \in X-X_{2}$ and $x_{2} \in X-X_{1}$. Since $X_{i}=X\left(I\left(X_{i}\right)\right)$, it follows that there are $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$ such that $f\left(x_{1}\right) \neq 0$ but $\left.f\right|_{X_{2}} \equiv 0$ and $g\left(x_{2}\right) \neq 0$ but $\left.g\right|_{X_{1}} \equiv 0$. Then $f g \in I$, but $f, g \notin I$. So I is not prime.
(b) Conversely, if $I(X)$ is not prime, then there are $f, g \notin I(X)$ with $f g \in I(X)$. Then $X(\langle I(X), f\rangle)=X_{2}$ and $X(\langle I(X), g\rangle)=X_{1}$ satisfy Definition 1.12.
(c) Either X is irreducible and there is nothing to prove, or else:

$$
X=X_{1} \cup X_{2}
$$

as in Definition 1.12. If X is not a union of finitely many irreducible closed subsets as in (c), then either X_{1} or X_{2} is also not a union of finitely many irreducible closed subsets and in particular, X_{i} is reducible for $i=1$ or 2 , and so $X_{i}=X_{i, 1} \cup X_{i, 2}$. Continuing, there is a decreasing chain of closed subsets $X \supset X_{i_{1}} \supset X_{i_{1}, i_{2}} \supset \cdots$ that does not stabilize, violating the Noetherian property.

The uniqueness of irreducible components is left as an exercise.
Example. $k\left[x_{1}, \ldots, x_{n}\right]$ is a unique factorization domain (UFD). If:

$$
f=f_{1}^{d_{1}} \cdots f_{m}^{d_{m}}
$$

is a prime factorization of $f \in k\left[x_{1}, \ldots, x_{n}\right]$ with distinct irreducible polynomials f_{1}, \ldots, f_{m}, then $X(f)=X\left(f_{1}\right) \cup \cdots \cup X\left(f_{m}\right)$ and the irreducible hypersurfaces $X\left(f_{i}\right)$ are the irreduciuble components of $X(f)$.
Assignment 1. Assume $k=\bar{k}$ (as we announced earlier).

1. Prove Lemma 1.1.
2. (a) If $X \subset k^{n}$ is an algebraic set, show that $X(I(X))=X$.
(b) If $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is a geometric ideal, show that $I(X(I))=I$.
(c) Do we need the assumption $k=\bar{k}$ for (a) and (b) to be true?
3. Prove that the components of a reducible algebraic set are uniquely determined.
4. Show that for each $n>0$ there are ideals in $k\left[x_{1}, x_{2}\right]$ that require n generators. (This is in contrast with $k\left[x_{1}\right]$, which is a PID).
5. Find embeddings of each of the following commutative rings in the ring $k[t]$ and conclude that the corresponding plane curves $X(\langle f\rangle)$ are irreducible.
(a) $k\left[x_{1}, x_{2}\right] /\left\langle x_{2}^{2}-x_{1}^{3}\right\rangle$
(b) $k\left[x_{1}, x_{2}\right] /\left\langle x_{2}^{2}-x_{1}^{2}\left(x_{1}-1\right)\right\rangle$
6. Find three prime quadratic polynomials $q_{1}, q_{2}, q_{3} \in k\left[x_{1}, x_{2}, x_{3}\right]$ such that:

$$
X\left(q_{1}\right) \cap X\left(q_{2}\right) \cap X\left(q_{3}\right)=\left\{\left(t, t^{2}, t^{3}\right) \mid t \in k\right\} \subset k^{3}
$$

(this is the twisted cubic curve). What are the pairwise intersections $X\left(q_{i}\right) \cap X\left(q_{j}\right)$?
7. Prove that the intersection of any two non-empty open subsets of k^{n} is nonempty. Conclude that the Zariski topology is not Hausdorff.

