
Algebraic Geometry I (Math 6130)

Utah/Fall 2020

1. Algebraic Sets

A commutative ring A with 1 is Noetherian if for every chain of ideals:

I1 ⊂ I2 ⊂ · · · ⊂ A
there is an n such that In = In+1 = · · · =

⋃∞
k=1 Ik (i.e. the chain stabilizes).

Lemma 1.1. A is Noetherian if and only if every ideal I ⊂ A is finitely generated.

Proof. Exercise.

• All fields k are Noetherian.

• Any PID (e.g. Z or k[x]) is Noetherian.

Lemma 1.2. If A is Noetherian and M is a finitely-generated A-module, then
every submodule N ⊂M is also finitely generated.

Proof. If M is finitely generated, there is a surjection q : An → M , and if the
submodule q−1(N) ⊂ An is a finitely generated A-module, then N is also finitely
generated (by the images of generators of q−1(N)). Thus it suffices to prove the
lemma for free modules An. But this follows by induction on n via exact sequences:

0→ An−1 → An → A→ 0 �

Hilbert Basis Theorem. If A is Noetherian, then A[x] is Noetherian.

Proof. Let J ⊂ A[x] be an ideal, and consider the ideals Id ⊂ A of leading
coefficients of polynomials f(x) ∈ J of degree d. That is, a ∈ Id if and only if there
is a polynomial f(x) ∈ J of the form axd+lower order “representing” a. The ideals
Id form an ascending chain that stabilizes at some In since A is Noetherian. Each
of the ideals I0, I1, ...., In is finitely generated by Lemma 1.1, and then J itself is
generated by any choice of n + 1 collections of polynomials in J of degrees 0, ..., n
that represent generators of each of the ideals I0, ..., In. �

Corollary 1.3. The polynomial rings k[x1, ..., xn] are Noetherian.

Example. Let X ⊂ kn be an arbitrary subset. Then:

I(X) = {f ∈ k[x1, ..., xn] | f(x) = 0 for all x ∈ X}
is an ideal, hence finitely generated by Corollary 1.3.

Let X = {(0, 0), (1, 0), (0, 1)} ⊂ k2 and view k[x1, x2] as k[x1][x2]. Let J = I(X).
Then:

I0 = 〈x21 − x1〉, I1 = 〈x1〉 and I2 = 〈1〉
and the polynomials x21−x1, x1x2, x22−x2 ∈ J generate J , as in the Basis Theorem.

Together with the definition of X(I) from §0, we have mappings:

X : {ideals I ⊂ k[x1, ..., xn])} → {subsets X ⊂ kn} and

I : {subsets X ⊂ kn} → {ideals I ⊂ k[x1, ..., xn])}

Definition 1.4. (a) X is algebraic if X = X(I) for some I ⊂ k[x1, ..., xn].

(b) I is geometric if I = I(X) for some subset X ⊂ kn.
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Simple Observations. (i) If I ⊆ J , then X(I) ⊇ X(J).

(ii) If X ⊆ Y , then I(X) ⊇ I(Y ).

(iii) X ⊆ X(I(X)) and I ⊆ I(X(I)).

Proposition 1.5. The algebraic sets X(I) ⊂ kn are the closed sets of a topology.
This is the Zariski Topology on kn..

Proof. We need to show that:

(i) ∅ and kn are closed sets.

(ii) If X and Y are closed sets, then X ∪ Y is a closed set.

(iii) If Xλ, λ ∈ Λ is any collection of closed sets, then ∩λXλ is a closed set.

These follow immediately from the corresponding properties of ideals.

(i) ∅ = X(〈1〉) and kn = X(〈0〉).
(ii) If X = X(I) and Y = X(J), then X ∪ Y = X(I · J).

(iii) If Xλ = X(Iλ) for λ ∈ Λ, then ∩Xλ = X(
∑
Iλ). �

Remark. It’s often the open sets U = Xc that are more natural to think about.
When we study schemes, we’ll see there are many closed subschemes of kn with the
same underlying set X, but only one open subscheme with the underlying set U .

Example. (a) Points a ∈ kn are always closed, via the maximal ideals:

{a} = X(〈x1 − a1, ...., xn − an〉)
so finite sets are also closed. These are the only closed subsets of k (other than k).
In k2, we also have the plane curves X = X(f(x1, x2)) which are never finite sets
when k is algebraically closed.

(b) By the Noetherian property and observation (ii) above, any descending chain:

X1 ⊇ X2 ⊇ X2 ⊇ · · ·
of closed sets of kn eventually stabilizes. Complementarily, any ascending chain:

U1 ⊆ U2 ⊆ U3 ⊆ · · ·
of open subsets of kn eventually stabilizes.

Suppose now that P ⊂ k[x1, ..., xn] is a prime ideal and let:

• X = X(P ) ⊂ kn

• k[X] = k[x1, ...., xn]/P (the integral domain of regular functions on X)

• k(X) = field of fractions of k[X] (the field of rational functions on X)

Let d be the transcendence degree of the field extension k ⊂ k(X). Then:

Noether Normalization. There are algebraically independent regular functions
y1, ..., yd ∈ k[X] such that k[X] is finitely generated as a k[y1, ..., yd]-module.

Proof. We will prove this under the (unnecessary) assumption that k is infinite.
With this assumption, we can in fact choose:

yi =

n∑
j=1

ai,jxj for i = 1, ..., d and ai,j ∈ k

to be linear combinations of the images of the coordinate functions xi in k[X].
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If n = d, then P = 0 (otherwise k(X) would have transcendence degree < d).
Otherwise, n < d and x1, ..., xn ∈ k[X] satisfy a relation f(x1, ..., xn) = 0 for some
polynomial f ∈ P of degree m > 0. If

f = axmn + {lower order in xn}
for some non-zero constant a ∈ k, then k[X] is generated by 1, xn, ..., x

m−1
n as a

module over the integral domain k[x1, ..., xn−1]/P ∩ k[x1, ..., xn−1].

In general f will not have this form, but we can change variables to put it in
this form as follows. Let yi = xi + aixn for i = 1, ..., n − 1. Then as a function of
y1, y2, ..., yn−1, xn we have

f = g(a1, ..., an−1)xmn + {lower order in xn}
where g is a non-zero polynomial in the ai. Because k is infinite, we can choose
the constants a1, ..., an−1 so that g(a1, ..., an−1) 6= 0 and then in terms of the new
coordinates y1, ..., yn−1, xn, the relation f does have the desired form, and so k[X]
is finitely generated as a module over k[Y ] = k[y1, ..., yn−1]/P ∩ k[y1, ..., yn−1] from
which it follows that k(Y ) is a finite field extension of k(Y ), so they have the same
transcendence degree over k, and then we can proceed by induction on n. �

Example. Consider the prime ideal P = 〈xy − 1〉 ⊂ k[x, y]. Then:

• X = X(P ) is the hyperbola {(t, t−1) | t ∈ k∗}.
• k[x, x−1] is not finitely generated as a k[x]-module, but

• k[x, x−1] is generated by 1 and x as a k[x+ x−1]-module.

Hilbert Nullstellensatz: If k is infinite and m ⊂ k[x1, ..., xn] is a maximal ideal,
then k ⊂ K = k[x1, ..., xn]/m is a finite field extension.

Proof. If not, then k ⊂ K is a field extension of transcendence degree d > 0,
and then by by Noether Normalization, we have:

k ⊂ k[y1, ..., yd] ⊂ K
where K is a finitely generated k[y1, ...., yd]-module. But this is impossible when
K is a field. For example, by Lemma 1.2 and 1.3, k[y1, y

−1
1 , ..., yd] ⊂ K would be a

finitely generated k[y1, ..., yd]-module, which it isn’t. �

Corollary 1.6. If k = k, then ma, a ∈ kn are the maximal ideals in k[x1, ..., xn].

Proof. Let m ⊂ k[x1, ..., xn] be a maximal ideal. Then by the Nullstellensatz,

k ⊂ k[x1, ..., xn]→ k[x1, ..., xn]/m = K

is a finite field extension of k, hence equal to k. Thus, m is the kernel of the map:

xi 7→ ai ∈ K = k; i = 1, ..., n

i.e. m is the maximal ideal ma = 〈x1 − a1, ...., xn − an〉. �

Corollary 1.7. If X(I) = ∅ and k = k, then 1 ∈ I.

Proof. If X(I) = ∅, then by Corollary 1.6, I is contained in no maximal ideal,
hence 1 ∈ I, so if I = 〈f1, ..., fm〉, there are polynomials g1, ..., gm so that:

1 =

m∑
i=1

gifi

(though finding the gi can be challenging).
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Definition 1.8. If I ⊂ A is an ideal, then the radical of I is the ideal:

rad(I) = {f ∈ A | fn ∈ I for some n > 0}
Note that if I ⊂ k[x1, ..., xn], then I ⊆ rad(I) ⊆ I(X(I)).

The following Corollary characterizes geometric ideals in k[x1, ..., xn] when k = k.

Corollary 1.9. If k = k, then I(X(I)) = rad(I).

Proof. Let I = 〈f1, .., fm〉 and suppose f ∈ I(X(I)) and consider the ideal:

J = 〈f1, ..., fm, fxn+1 − 1〉 ⊂ k[x1, ..., xn+1]

Then by construction, X(J) = ∅, so 1 ∈ J by Corollary 1.7 and

1 =

m∑
i=1

gifi + g · (fxn+1 − 1)

for some g1, ..., gm, g ∈ k[x1, ..., xn+1]. Now formally substitute f−1 for xn+1. Then:

1 =

m∑
i=1

gi(x1, ..., xn, f
−1)fi

and multiplying through by fN for large enough N gives:

fN =
∑

hifi ∈ I for hi = fNgi(x1, ..., xn, f
−1) ∈ k[x1, ..., xn]

Thus rad(I) ⊆ I(X(I)). �

Definition 1.10. An ideal I is radical if rad(I) = I.

Example. If I is any ideal, then rad(rad(I)) = rad(I), so rad(I) is radical.

Corollary 1.11. If k = k, geometric ideals are the same as radical ideals.

Proof. Clearly every ideal of the form I(X) for any X ⊂ kn is a radical ideal.
On the the other hand, if I is radical, then I = I(X(I)), so I is geometric. �

Notice also that if I 6= J are radical ideals, then X(I) 6= X(J). So:

X : {radical ideals I ⊂ k[x1, ..., xn]} → {algebraic (closed) subsets X ⊂ kn}
is a bijection, with inverse I (this follows from X(I(X(I)) = X(rad(I)) = X(I)).

Note that a prime ideal P is also a radical ideal, so I(X(P )) = P (when k = k).
The closed sets X(P ) corresponding to prime ideals are “irreducible.”

Definition 1.12. A closed set X ⊂ kn in the Zariski topology is reducible if:

X = X1 ∪X2

for two nonempty closed subsets X1 ⊂ X and X2 ⊂ X (properly contained in X).
If no such pair of closed subsets exists, then X is irreducible.

Announcement. Unless otherwise indicated, we will assume k = k from now on.

Proposition 1.13. (a) If P ⊂ k[x1, ..., xn] is a prime ideal then X(P ) is irreducible.

(b) If X ⊂ kn is an irreducible closed set, then I(X) is prime.

(c) Every closed set X ⊂ kn is a union of finitely many irreducible closed sets,
and the minimal such union: X = X1 ∪ · · · ∪Xm (with Xi 6⊂ X −Xi) is uniquely
determined, up to permuting the irreducible components X1, ..., Xm.
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Proof. (a) Let I be a radical ideal. If X(I) is reducible, let X = X1 ∪X2 as in
Definition 1.12 and choose x1 ∈ X −X2 and x2 ∈ X −X1. Since Xi = X(I(Xi)),
it follows that there are f, g ∈ k[x1, ..., xn] such that f(x1) 6= 0 but f |X2 ≡ 0 and
g(x2) 6= 0 but g|X1

≡ 0. Then fg ∈ I, but f, g 6∈ I. So I is not prime.

(b) Conversely, if I(X) is not prime, then there are f, g 6∈ I(X) with fg ∈ I(X).
Then X(〈I(X), f〉) = X2 and X(〈I(X), g〉) = X1 satisfy Definition 1.12.

(c) Either X is irreducible and there is nothing to prove, or else:

X = X1 ∪X2

as in Definition 1.12. If X is not a union of finitely many irreducible closed subsets
as in (c), then either X1 or X2 is also not a union of finitely many irreducible closed
subsets and in particular, Xi is reducible for i = 1 or 2, and so Xi = Xi,1 ∪Xi,2.
Continuing, there is a decreasing chain of closed subsets X ⊃ Xi1 ⊃ Xi1,i2 ⊃ · · ·
that does not stabilize, violating the Noetherian property.

The uniqueness of irreducible components is left as an exercise. �

Example. k[x1, ..., xn] is a unique factorization domain (UFD). If:

f = fd11 · · · fdmm
is a prime factorization of f ∈ k[x1, ..., xn] with distinct irreducible polynomials
f1, ..., fm, then X(f) = X(f1) ∪ · · · ∪ X(fm) and the irreducible hypersurfaces
X(fi) are the irreduciuble components of X(f).

Assignment 1. Assume k = k (as we announced earlier).

1. Prove Lemma 1.1.

2. (a) If X ⊂ kn is an algebraic set, show that X(I(X)) = X.
(b) If I ⊂ k[x1, ..., xn] is a geometric ideal, show that I(X(I)) = I.
(c) Do we need the assumption k = k for (a) and (b) to be true?

3. Prove that the components of a reducible algebraic set are uniquely determined.

4. Show that for each n > 0 there are ideals in k[x1, x2] that require n generators.
(This is in contrast with k[x1], which is a PID).

5. Find embeddings of each of the following commutative rings in the ring k[t] and
conclude that the corresponding plane curves X(〈f〉) are irreducible.

(a) k[x1, x2]/〈x22 − x31〉
(b) k[x1, x2]/〈x22 − x21(x1 − 1)〉

6. Find three prime quadratic polynomials q1, q2, q3 ∈ k[x1, x2, x3] such that:

X(q1) ∩X(q2) ∩X(q3) = {(t, t2, t3) | t ∈ k} ⊂ k3

(this is the twisted cubic curve). What are the pairwise intersections X(qi)∩X(qj)?

7. Prove that the intersection of any two non-empty open subsets of kn is non-
empty. Conclude that the Zariski topology is not Hausdorff.


