
Algebraic Geometry I (Math 6130)

Utah/Fall 2020

2. Affine Varieties.

The space kn with the Zariski topology supports a sheaf of regular functions.
This information defines affine n-space Ank over the (algebraically closed) field k.

Definition 2.1. A presheaf A of commutative rings on a topological space X
consists of the following information:

• A commutative ring A(U) with 1 attached to each open subset U ⊆ X.

• Restriction homomorphisms ρU,V : A(U) → A(V ) of commutative rings with
1 attached to each inclusion V ⊆ U of open sets.

such that ρU,U = id and restriction homomorphisms compose, i.e.

ρV,W ◦ ρU,V = ρU,W whenever U ⊆ V ⊆W
Remark. In other words, a presheaf is a contravariant functor from the category of
open subsets of X to commutative rings with 1 (and A(∅) is the ring with 0 = 1).

Example. (a) Fix a commutative ring A with 1 and let:

A(U) = A and ρU,V = idA for all U, V 6= ∅
This is the constant presheaf.

(b) The (infinitely) differentiable functions f : U → R defined on the open
subsets U ⊂M of a differentiable manifold M are a presheaf, denoted by C∞M with
restriction maps ρU,V being the restriction of the domain: ρU,V (f) = f |V . Note
that the restrictions are typically not surjective ring homomorphisms.

Definition 2.2. A presheaf A is a sheaf if, in addition:

(i) If {Uλ} is an open cover of U , and a ∈ A(U) and ρU,Uλ(a) = 0 for all λ, then:

a = 0 ∈ A(U)

(and conversely, if a = 0, then evidently ρU,Uλ(a) = 0 for all λ).

(ii) If {Uλ} is an open cover of U and aλ ∈ A(Uλ) are given, satisfying:

ρUλ,Uλ∩Uµ (aλ) = ρUµ,Uλ∩Uµ (aµ) for all λ, µ

then there is an a ∈ A(U) such that ρU,Uλ(a) = aλ for all λ.

Remark. Using (i), one concludes that the a ∈ A(U) in (ii) is uniquely determined.

Examples. (a) Constant presheaves satisfy (i), but usually not (ii). If U, V are
disjoint (non-empty) open subsets of X and A(U) = A is the constant presheaf,
then U, V are an open cover of U ∪ V , and if (ii) held, then

0 ∈ A(U) = A and 1 ∈ A(V ) = A

would be the two restrictions of a single a ∈ A(U ∪V ) = A, yielding 0 = a = 1. All
the (interesting) commutative rings with 0 6= 1 therefore give constant presheaves
that are not sheaves. Note, however, that all pairs of nonempty open sets intersect
in the Zariski topology on kn, and in that case the constant presheaves are sheaves!

(b) The presheaf C∞M of differentiable functions is a sheaf. Functions are zero if
they are zero locally, and functions are defined if they are defined locally.
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Definition 2.3. A rational function φ ∈ k(x1, ..., xn) is regular at a ∈ kn if

φ =
f

g
for f, g ∈ k[x1, ..., xn] and g(a) 6= 0

Remark. The ring of functions that are regular at a ∈ kn is the localization

k[x1, ..., xn]ma

where the localization of a domain A at a prime ideal P is defined by:

AP =

{
f

g
| f ∈ A, g ∈ A− P

}
/ ∼

As in the field of fractions k(A), the relation is given by f/g ∼ p/q if and only if
fq = pg. In fact, the field of fractions k(A) is the localization of A at the zero ideal.

Definition 2.4. The sheaf OAnk of regular functions on Ank is defined by:

OAnk (U) =
⋂
a∈U

k[x1, ..., xn]ma ⊂ k(x1, ..., xn)

i.e. it consists of the rational functions that are regular at all points of U .

Examples. (a) For g ∈ k[x1, ..., xn], let Ug := kn−X(g). The “other” localization:

k[x1, ...., xn]g =

{
f

gm
| f ∈ k[x1, ..., xn] and m ≥ 0

}
/ ∼

at the multiplicative set {1, g, g2, ....} is clearly contained in the ring OAnk (Ug). We
will see (Proposition 2.7) that k[x1, ..., xn]g = OAnk (Ug). In particular, this is a
strictly larger ring than k[x1, ..., xn].

(b) Let U = k2 − {(0, 0)}. Then OA2
k
(U) = k[x1, x2]. This is equivalent to:

(∗) if g ∈ k[x1, x2] and g(0, 0) = 0, then g(a) = 0 for some a 6= (0, 0)

Intuitively, the loci X(g) ⊂ k2 are irreducible algebraic curves and not points
(see Corollary 2.14.) On the other hand, X(x21 + x22) = (0, 0) ∈ R2, so when we
prove this, we will clearly need the assumption k = k.

Affine Space Ank is, by definition, the vector space kn with the Zariski topology
and sheaf of regular functions (assuming, as always, that k is algebraically closed).

Affine Varieties. We now generalize from Ank to affine varieties.

Let P ⊂ k[x1, ..., xn] be a prime ideal, X = X(P ) ⊂ kn and k[X] := k[x1, ..., xn]/P .

With the assumption that k = k, the points x ∈ X correspond to maximal ideals
mx ⊂ k[X] via the Hilbert Nullstellensatz and the ideal correspondence:

{(maximal) ideals in k[X]} ↔ {(maximal) ideals in k[x1, ..., xn] containing P}
Notice that the elements of k[X] are functions f : X → k, and

f(x) = g(x) for all x ∈ X if and only if f = g ∈ k[X]

since f(x) = g(x) for all x if and only if f − g ∈ mx ⊂ k[X], and 0 =
⋂
x∈X mx,

which is the well-known fact that a prime ideal P is the intersection of all maximal
ideals that contain P . We now get an intrinsic definiton of the Zariski topology:

Z ⊂ X is closed if and only if Z = X(I) for some I ⊂ k[X]

which agrees with the topology induced from kn (by the ideal correspondence).
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Let k(X) be the fraction field of k[X]. These are the rational functions on X.

Definition 2.5. A rational function φ ∈ k(X) is regular at x ∈ X if φ ∈ k[X]mx .

Remark. This is the same as Definition 2.3, but in this case one needs to take
some care since unlike the ring k[x1, ...., xn], the coordinate rings k[X] are often
not UFDs. In that case, there are many choices for f and g so that φ = f/g. To
prove that φ is regular at x, we just need to find one such expression with g(x) 6= 0.

Example. Consider the ideal P = 〈x1x4 − x2x3〉 ⊂ k[x1, x2, x3.x4]. This is prime,
but evidently k[X] is not a UFD since by construction:

x1x4 = x2x3

and xi are irreducible elements of k[X]. Thus:

φ =
x1
x2

=
x3
x4
∈ k(X)

and φ is regular away from the intersection X(x2) ∩X(x4) = {(s, 0, t, 0)} whereas
X(x2) = {(s, 0, t, 0)} ∪ {(0, 0, t, s)} and X(x4) = {(s, 0, t, 0)} ∪ {(s, t, 0, 0)}, which
shows that no single form for φ accounts for all the regular points.

Definition 2.6. The sheaf of regular functions OX on the affine variety X is:

OX(U) =
⋂
x∈U

k[X]mx (the rational functions that are regular at all points of U)

Proposition 2.7. If g ∈ k[X], let Ug = X −X(g) ⊂ X, Then:

OX(Ug) = k[X]g

In particular, OX(X) = k[X].

Proof. Suppose φ ∈ OX(Ug) and consider the ideal of denominators of φ:

I = {h ∈ k[X] | hφ ∈ k[X]}
Then X(I) ⊂ X is the set of points where φ is not regular, and so X(I) ⊂ X(g),
by definition of OX(Ug). Thus g ∈ I(X(I)) = rad(I) by the Nullstellesatz. Thus:

gnφ ∈ k[X] for some n

i.e. φ ∈ k[X]g. This gives OX(Ug) ⊂ k[X]g. The other inclusion is immediate. �

Remark. The open subsets Ug ⊆ X are a basis for the Zariski topology on X.
Indeed, if X(I) ⊂ X is closed then I = 〈g1, .., gr〉 for finitely many g1, ..., gr ∈ k[X]
(since k[X] is Noetherian) and then:

U = X −X(I) = X − (X(g1) ∩ · · · ∩X(gr)) = Ug1 ∪ · · ·Ugr
so in fact every open set is the union of finitely many basic open sets Ug.

Definition 2.8. The stalk at x ∈ X of a presheaf A of commutative rings is the
direct limit over the open neighborhoods x ∈ U :

Ax = lim
→
A(U) (via the restriction maps ρU,V )

Recall that the direct limit is a commutative ring with ring homomorphisms:

A(U)→ Ax
that are compatible, in the sense that they factor through ρU,V whenever V ⊆ U
(and a universal property).
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Examples. (a) The stalks of the constant sheaf A(U) = A are Ax = A.

(b) The stalks of the sheaf C∞M of differentiable functions on a differentiable
manifold M are the germs of C∞ functions at x ∈ M . These are in fact all
isomorphic rings, since every point x ∈ M has an open neighborhood x ∈ B
diffeomorphic to the unit open ball in Rn, and the direct limit doesn’t change
when it is restricted to open neighborhoods of x that are contained in B.

(c) The stalks OX,x of the sheaf OX of regular functions on X are the local rings:

OX,x = k[X]mx

with the inclusion maps OX(U) ⊂ k[X]mx for each neighborhood of x. Notice that
when x ∈ Ug, then this corresponds to k[X]g ⊂ k[X]mx

Taking Stock. An affine variety (over k = k) converts an algebraic object:

A = a finitely generated k-algebra integral domain

into a geometric object (independent of the choice of generators x1, ..., xn ∈ A).
The geometric object consists of:

• Points. X = {maximal ideals of A}

• Topology. U = X−X(I) are the open sets of the Zariski topology, with a basis
of open sets given by Ug = X −X(g) and with respect to which X is irreducible.

• Sheaf. The sheaf of regular functions OX with OX(Ug) = Ag and OX,x = Amx .

Following the scheme literature, we will denote this as a pair:

(X,OX) = maxspec(A)

and call it the “spectrum” of maximal ideals in A. To interpret maxspec as a
functor, we need affine varieties to belong to a category. The category we use will
be the category of sheaved spaces:

(X,OX)

consisting of a topological space X and a sheaf of functions φ : U → k.

Let (X,OX) and (Y,OY ) be two sheaved spaces.

Definition 2.9. A continuous map η : X → Y is a morphism of sheaved spaces if
and only if the pull-back of functions defined by OY are functions defined by OX ,
i.e.

η∗(OY (U)) ⊂ OX(f−1(U))

for all open subsets U ⊂ Y , where the pull-back is defined by η∗(f) := f ◦ η.

Quasi-Affine and Affine Varieties in the Category of Sheaved Spaces. Let
W ⊂ X = maxspec(A) be an open subset and define the sheaf of functions OW by:

OW (U) = OX(U)

Any sheaved space isomorphic to some (W,OW ) is a quasi-affine variety in the
category of sheaved spaces. Sheaved spaces that are isomorphic to one of the
sheaved spaces maxspec(A) = (X,OX) are affine varieties.

Proposition 2.10. Each of the quasi-affine varieties (Ug,OUg ) for g ∈ A is affine.

Proof. Given A and g ∈ A, consider the localization Ag.
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(1) Ag is a finitely generated k-algebra integral domain. If x1, ...., xn ∈ A are
generators of A, then Ag ⊂ k(A) is generated by x1, ...., xn, xn+1 = 1/g.

(2) There is a natural bijection of points:

i : maxspec(Ag)→ Ug ⊂ maxspec(A)

given by the localization of maximal ideals:

{maximal ideals in Ag}
i→ {maximal ideals in A not containing g}

(3) This induces a bijection of open sets (forming a basis of the two topologies):

{Uφ ⊂ maxspec(Ag)}
i→ {Uφgn ⊂ Ug ⊂ A} (for all large enough n)

so the bijection i is a homeomorphism of the Zariski topologies, and

(4) The pull-back via i of regular functions (on the basis of open sets) identifies:

i∗ : Aφ·gn = (Ag)φ ⊂ k(A)

as the same subrings of k(A).

Example. (a) If A = k[x] and g = x, then the quasi-affine varieties:

A1
k − {0} and the hyperbola X(x1x2 − 1) ⊂ A2

k

are isomorphic as sheaved spaces, via the projection map. Hence A1
k−{0} is affine.

(b) The quasi-affine variety (W = A2
k − {(0, 0)},OW ) is not affine.

This will be a consequence of the (still unproven) fact that OA2
k
(W ) = k[x1, x2]

since X = {maximal ideals in OX(X)} for affine varieties and W lacks the origin.

Definition 2.11. maxspec is a contravariant functor, with the assignment:

maxspec(α : A→ B) = (α∗ : maxspec(B)→ maxspec(A))

for all homomorphisms of commutative rings, defined by:

• α∗(mb) = α−1(mb) from which we conclude that (α∗)−1(Ug) = Uα(g) for g ∈ A.
Since these open sets form a basis of the Zariski topology on Y = maxspec(A), it
follows that α∗ is a continuous map of topological spaces.

• (α∗)∗(Ag) = Bα(g) from which we conclude that α∗ pulls regular functions on
Ug back to regular functions on Uα(g). Since these are a basis for the topology, it
follows again that α is a morphism in the category of sheaved spaces,

Note. As defined, maxspec is an equivalence of categories from finitely generated
commutative k-algebra domains to the full subcategory of affine varieties within the
category of sheaved spaces.

Examples. (a) If B = k[x1, ..., xn]/P , then the surjective ring homomorphism:

α : k[x1, ..., xn]→ B

corresponds to the closed embedding of X = maxspec(B) in the affine space Ank ,
identifying X with the affine variety X(P ).

(b) If g ∈ A and B = Ag, then the injective ring homomorphism α : A → Ag
corresponds to the open embedding Ug ⊂ maxspec(A). But in general, injective
ring homomorphisms do not correspond to open embeddings. For example:

α : k[x1]→ k[x1, x2] corresponds to the projection p : A2
k → A1

k
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(c) Suppose A = k[x1, ..., xn]/P and B = k[y1, ..., ym]/Q and:

α : A→ B is a commutative ring homomorphism

Then by lifting the images α(xi) = f i to polynomials fi(y1, ..., ym) ∈ k[y1, ..., ym],
we get a commuting diagram of ring homomorphisms:

k[x1, ..., xn]
α̃→ k[y1, ..., ym]

↓ ↓
A

α→ B

from which we conclude:

(∗) Every morphism η : X(Q)→ X(P ) of embedded affine varieties X(Q) ⊂ Amk
and X(P ) ⊂ Ank lifts to a morphism of affine spaces:

η̃(y1, ..., ym) = (f1(y1, ...., ym), ...., fn(y1, ..., ym))

given by polynomial functions of the coordinates. In that sense, morphisms of affine
varieties are polynomial (regular) maps.

The functor maxspec allows us to define geometric properties of morphisms of
affine varieties (sheaved spaces) in terms of algebraic properties of homomorphisms
of commutative rings. This will be a recurring theme. We start with:

Definition 2.12. A morphism φ : (X,OX) → (Y,OY ) of affine varieties is finite
onto its image if the corresponding ring homomorphism:

α = φ∗ : OY (Y ) = A→ OX(X) = B

makes B into a finite A-module.

Proposition 2.12. If a morphism φ of affine varieties is finite onto its image, then:

(a) φ : X → Y is finite-to-one.

(b) φ : X → Y takes (irreducible) closed sets to (irreducible) closed sets.

(c) If in addition, α = φ∗ is injective, then φ : X → Y is surjective.

Corollary 2.13. If A is a finitely generated commutative algebra domain over k
and k(A) has transcendence degree d over k, then there is an inclusion:

α : k[y1, ..., yd] ⊂ A such that A is a finite k[y1, ..., yd]-module

by Noether Normalization, and so the morphism of varieties:

α∗ : maxspec(A)→ Adk
is surjective and finite-to-one by Proposition 2.12. If x1, ..., xn are generators of A
(as a k-algebra) then the yi may be chosen so that the finite-to-one morphism α∗

lifts (in the sense of (∗) above) to a linear projection Ank → Adk.

Corollary 2.14. If g ∈ k[x1, ..., xn] for n > 1, then X(g) is not a single point.

Proof. A single point does not project onto Adk when d > 0.
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Assignment 2.

1. (a) Explain why the field k(A) of rational functions on A is:

lim
→
OX(U) taken over the direct system of all open subsets of X

If P ⊂ A is prime, express k[A]P as a direct limit over a system of open sets in X.

The dimension of X is the transcendence degree of the field extension k ⊂ k(A).

(b) Show that the rings k[A]P are not finitely generated k-algebras when d > 0.

2. The Zariski cotangent space of X =maxspec(A) at a point x ∈ X is:

mx/m
2
x

where mx ⊂ A is the maximal ideal corresponding to x.

(a) Identify mx/m
2
x = m/m2 where m is the (unique) maximal ideal in OX,x.

(b) If A = k[x1, ..., xn]/〈f1, ..., fm〉, show that the Zariski cotangent space to X
at a ∈ X ⊂ Ank is the intersection of the affine linear subspaces:∑ ∂fi

∂xj
xj =

∑ ∂fi
∂xj

ai; i = 1, ...,m

through a = (a1, ..., an) ∈ kn (which becomes the origin of the vector spacemx/m
2
x).

3. Discuss the points (1)-(4) in the proof of Proposition 2.10.

4. The presheaves of abelian groups (or commutative rings with 1) on a topological
space X form a category, in which the morphisms f : A → B of presheaves are
natural transformations of functors, i.e. collections of homomorphisms:

fU : A(U)→ B(U) with ρBU,V ◦ fU = fV ◦ ρAU,V
In particular, a morphism of presheaves determines homomorphisms of the stalks

fx : Ax → Bx for each x ∈ X
Let A be a fixed abelian group and letA+ be the presheaf of continuous functions:

α : U → A (for the discrete topology on A)

(i) Show that A+ is a sheaf of abelian groups with stalks A+
x = A.

(ii) Show that the natural morphism from the constant presheaf to A+:

f : A → A+ (regarding a constant function as a continuous function)

induces an isomorphism on stalks.

Remark. This is an example of the sheafification of a presheaf.

5. If (X,OX) is a sheaved space, we saw that an open subset W ⊂ X is a sheaved
space with the induced topology and sheaf OW (U) = OX(U).

More painfully, if Z ⊂ X is a closed set with the induced topology, then:

OX |Z(U) = {f : U → k | ∃g ∈ OX(W ) with W ∩ Z = U and g|U = f}
defines a presheaf of rings that may or may not itself be a sheaf. When (X,OX) =
maxspec(A) and Z = X(P ) for a prime ideal P ⊂ A, convince yourself that
maxspec(A/P ) = (Z,OZ) sheafifies the presheaf OX |Z . It is in this sense that
we say that a closed embedding is an isomorphism from a sheaved space to a closed
subset of a sheaved space.
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6. (a) Prove that α : A→ B is injective if and only if the image of

α∗ : Y = maxspec(B)→ X = maxspec(A)

is dense in X. Such a morphism of affine varieties is called dominant.

(b) Use (a) to factor an arbitrary morphism φ : Y → X as:

Y
φ→ Z ⊂ X

a dominant morphism followed by a closed embedding.

(c) Consider the injective ring homomorphism:

α : k[x1, x2]→ k[y1, y2]; given by y1 = x1, y2 = x1x2

Describe the resulting morphism of affine planes:

α∗ : A2
k → A2

k

and conclude that the image of α∗, while dense, is neither open nor closed.

7. Determine the commutative algebra facts you need to prove Proposition 2.12.
Then look up their proofs.


