
Lesson Twelve

Math 6080 (for the Masters Teaching Program), Summer 2020

Euler’s Proof of Euclid’s Theorem. Recall that the harmonic series:

1 +
1

2
+

1

3
+ · · · 1

n
+ · · ·

diverges, which is to say that it eventually surpasses every natural number.

On the other hand, the geometric series of the powers of 1/2 converges:

1 +
1

2
+

1

4
+ · · ·+ 1

2n
+ · · · = 2

For every prime number p, the geometric series of powers of 1/p converges:

1 +
1

p
+

1

p2
+ · · ·+ 1

pn
+ · · · = 1

1− 1
p

=
p

p− 1

Now suppose we multiply two of them:

(1 +
1

2
+

1

4
+ · · ·+ 1

2n
+ · · ·)(1 +

1

3
+

1

9
+ · · ·+ 1

3n
+ · · ·)

On the one hand:

2

(
3

3− 1

)
= 3

but on the other hand, by distributing the multiplication, we obtain:

1 +
1

2
+

1

3
+

1

4
+

1

6
+

1

9
+

1

8
+ ... +

1

2m3n
+ · · · = 3

which is the sum of the reciprocals of every number with only 2 and 3 as factors.

If we do this for all the primes, we get:

(∗) harmonic series =
2

1
· 3

2
· 5

4
· · · p

p− 1
· · ·

In particular, there cannot be finitely many prime because the left side diverges!

But Euler gets an even better result. Let’s review some Calculus.

(i) the sum of the harmonic series to 1/n is trapped between ln(n) and ln(n)+1.
We can numerically check this with Python! Thus the harmonic series very slowly
diverges, dancing an intimate slow dance with the natural logarithm.

(ii) the Maclaurin power series for ln(1− x) is:

ln(1− x) = −x− x2

2
− x3

3
− · · ·

In particular, setting x = −1, we get:

ln(2) = 1− 1

2
+

1

3
− · · ·

which is the alternating harmonic series, whose convergence we can again check
numerically with Python. This converges fairly quickly. If n is odd, then:

1− 1

2
+

1

3
− · · · − 1

n− 1
< ln(2) < 1− 1

2
+

1

3
− · · ·+ 1

n
< ln(2) +

1

n

because the series is alternating, so the series summed up to 1/n is trapped between
ln(2) and ln(2) + 1/n.

1

2

(iii) Now let’s take the natural logarithm of both sides of (∗) above:

ln(harmonic series) = ln

(∏
p

(
1

1− 1
p

))
=
∑

ln

(
1

1− 1
p

)

=
∑
−
(
−1

p
− 1

2p2
− 1

3p2
− · · ·

)
If we rarrange∗ the terms of this infinite sum of infinite sums, we get:

ln(harmonic series) =
∑
p

1

p
+

1

2

∑
p

1

p2
+

1

3

∑
p

1

p3
+ · · · · · ·

and all the terms (and their infinite sum!) other than the first term converge.

The consequence of this is:

ln(harmonic series) <
∑
p

1

p
+ constant

But ln(ln(n)) goes to infinity as n goes to infinity, so the sum of 1/p diverges!
As noted earlier, this says more than simply that there are infinitely many primes.

Dirichlet’s Theorem is a variation in which one fixes a “modulus” m and asks:

For each remainder r between 0 and m−1, what “proportion” of the primes satisfy:

p%m = r

For example, suppose m = 3. Then:

(0) 3 is divisible by 3.

(1) 7, 13, 19, ... satisfy p%3 = 1.

(2) 2, 5, 11, 17, ... satisfy p%3 = 2.

As another example, suppose m = 4. Then:

(0) Nothing

(1) 5, 13, 17, 29, ... satisfy p%4 = 1.

(2) 2 satisfies p%4 = 2. Nothing else.

(3) 3, 7, 11, 19, ... satisfy p%4 = 3.

Dirichlet’s Theorem. For each fixed modulus m.

(i) If gcd(m, r) 6= 1, then at most one prime satifies p%m = r.

(ii) For all the remainders r that do satisfy gcd(m, r) = 1, the numbers of primes
between 1 and n satisfying p%m = r are approximately the same. In an appropriate
sense, the infinitely many primes are evenly distributed among these remainders.

Remark. The proof of (i) is easy. If p%m = r, then:

gcd(m,r) = gcd(m,p) = d

and so d divides p. But if p is prime, then we must have d = 1 or d = p.

(ii) is hard.

3

Our Challenge. To write Python code to check (ii) numerically.

The Strategy. Use the Sieve of Eratosthenes to create a list of lists.

Dirichlet = []
for r in range(m):

Dirichlet = Dirichlet + [[]]

This creates a list of m empty lists, with Dirichlet[r] = [].

Now we feed into each Dirichlet[r] all the primes in the Sieve with p%m = r.

Then we compare the values len(Dirichlet[r]) as r ranges from 0 to m − 1 and
numerically “see” the even distribution of the primes from Dirichlet’s Theorem. .

Exercise. Write the code to do this.

