
Lesson Twelve

Math 6080 (for the Masters Teaching Program), Summer 2020

Euler’s Proof of Euclid’s Theorem. Recall that the harmonic series:
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diverges, which is to say that it eventually surpasses every natural number.

On the other hand, the geometric series of the powers of 1/2 converges:
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For every prime number p, the geometric series of powers of 1/p converges:
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Now suppose we multiply two of them:
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On the one hand:
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but on the other hand, by distributing the multiplication, we obtain:
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which is the sum of the reciprocals of every number with only 2 and 3 as factors.

If we do this for all the primes, we get:
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In particular, there cannot be finitely many prime because the left side diverges!

But Euler gets an even better result. Let’s review some Calculus.

(i) the sum of the harmonic series to 1/n is trapped between ln(n) and ln(n)+1.
We can numerically check this with Python! Thus the harmonic series very slowly
diverges, dancing an intimate slow dance with the natural logarithm.

(ii) the Maclaurin power series for ln(1− x) is:
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In particular, setting x = −1, we get:
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which is the alternating harmonic series, whose convergence we can again check
numerically with Python. This converges fairly quickly. If n is odd, then:
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because the series is alternating, so the series summed up to 1/n is trapped between
ln(2) and ln(2) + 1/n.
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(iii) Now let’s take the natural logarithm of both sides of (∗) above:
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If we rarrange∗ the terms of this infinite sum of infinite sums, we get:
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and all the terms (and their infinite sum!) other than the first term converge.

The consequence of this is:
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But ln(ln(n)) goes to infinity as n goes to infinity, so the sum of 1/p diverges!
As noted earlier, this says more than simply that there are infinitely many primes.

Dirichlet’s Theorem is a variation in which one fixes a “modulus” m and asks:

For each remainder r between 0 and m−1, what “proportion” of the primes satisfy:

p%m = r

For example, suppose m = 3. Then:

(0) 3 is divisible by 3.

(1) 7, 13, 19, ... satisfy p%3 = 1.

(2) 2, 5, 11, 17, ... satisfy p%3 = 2.

As another example, suppose m = 4. Then:

(0) Nothing

(1) 5, 13, 17, 29, ... satisfy p%4 = 1.

(2) 2 satisfies p%4 = 2. Nothing else.

(3) 3, 7, 11, 19, ... satisfy p%4 = 3.

Dirichlet’s Theorem. For each fixed modulus m.

(i) If gcd(m, r) 6= 1, then at most one prime satifies p%m = r.

(ii) For all the remainders r that do satisfy gcd(m, r) = 1, the numbers of primes
between 1 and n satisfying p%m = r are approximately the same. In an appropriate
sense, the infinitely many primes are evenly distributed among these remainders.

Remark. The proof of (i) is easy. If p%m = r, then:

gcd(m,r) = gcd(m,p) = d

and so d divides p. But if p is prime, then we must have d = 1 or d = p.

(ii) is hard.



3

Our Challenge. To write Python code to check (ii) numerically.

The Strategy. Use the Sieve of Eratosthenes to create a list of lists.

Dirichlet = []
for r in range(m):

Dirichlet = Dirichlet + [[ ]]

This creates a list of m empty lists, with Dirichlet[r] = [].

Now we feed into each Dirichlet[r] all the primes in the Sieve with p%m = r.

Then we compare the values len(Dirichlet[r]) as r ranges from 0 to m − 1 and
numerically “see” the even distribution of the primes from Dirichlet’s Theorem. .

Exercise. Write the code to do this.


