Lesson Twelve

Math 6080 (for the Masters Teaching Program), Summer 2020
Euler's Proof of Euclid's Theorem. Recall that the harmonic series:

$$
1+\frac{1}{2}+\frac{1}{3}+\cdots \frac{1}{n}+\cdots
$$

diverges, which is to say that it eventually surpasses every natural number.
On the other hand, the geometric series of the powers of $1 / 2$ converges:

$$
1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{n}}+\cdots=2
$$

For every prime number p, the geometric series of powers of $1 / p$ converges:

$$
1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots+\frac{1}{p^{n}}+\cdots=\frac{1}{1-\frac{1}{p}}=\frac{p}{p-1}
$$

Now suppose we multiply two of them:

$$
\left(1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{n}}+\cdots\right)\left(1+\frac{1}{3}+\frac{1}{9}+\cdots+\frac{1}{3^{n}}+\cdots\right)
$$

On the one hand:

$$
2\left(\frac{3}{3-1}\right)=3
$$

but on the other hand, by distributing the multiplication, we obtain:

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+\frac{1}{9}+\frac{1}{8}+\ldots+\frac{1}{2^{m} 3^{n}}+\cdots=3
$$

which is the sum of the reciprocals of every number with only 2 and 3 as factors.
If we do this for all the primes, we get:

$$
(*) \text { harmonic series }=\frac{2}{1} \cdot \frac{3}{2} \cdot \frac{5}{4} \cdots \frac{p}{p-1} \cdots
$$

In particular, there cannot be finitely many prime because the left side diverges!
But Euler gets an even better result. Let's review some Calculus.
(i) the sum of the harmonic series to $1 / n$ is trapped between $\ln (n)$ and $\ln (n)+1$. We can numerically check this with Python! Thus the harmonic series very slowly diverges, dancing an intimate slow dance with the natural logarithm.
(ii) the Maclaurin power series for $\ln (1-x)$ is:

$$
\ln (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\cdots
$$

In particular, setting $x=-1$, we get:

$$
\ln (2)=1-\frac{1}{2}+\frac{1}{3}-\cdots
$$

which is the alternating harmonic series, whose convergence we can again check numerically with Python. This converges fairly quickly. If n is odd, then:

$$
1-\frac{1}{2}+\frac{1}{3}-\cdots-\frac{1}{n-1}<\ln (2)<1-\frac{1}{2}+\frac{1}{3}-\cdots+\frac{1}{n}<\ln (2)+\frac{1}{n}
$$

because the series is alternating, so the series summed up to $1 / n$ is trapped between $\ln (2)$ and $\ln (2)+1 / n$.
(iii) Now let's take the natural logarithm of both sides of (*) above:

$$
\begin{gathered}
\ln (\text { harmonic series })=\ln \left(\prod_{p}\left(\frac{1}{1-\frac{1}{p}}\right)\right)=\sum \ln \left(\frac{1}{1-\frac{1}{p}}\right) \\
=\sum-\left(-\frac{1}{p}-\frac{1}{2 p^{2}}-\frac{1}{3 p^{2}}-\cdots\right)
\end{gathered}
$$

If we rarrange* the terms of this infinite sum of infinite sums, we get:

$$
\ln (\text { harmonic series })=\sum_{p} \frac{1}{p}+\frac{1}{2} \sum_{p} \frac{1}{p^{2}}+\frac{1}{3} \sum_{p} \frac{1}{p^{3}}+\cdots \cdots
$$

and all the terms (and their infinite sum!) other than the first term converge.
The consequence of this is:

$$
\ln (\text { harmonic series })<\sum_{p} \frac{1}{p}+\text { constant }
$$

But $\ln (\ln (n))$ goes to infinity as n goes to infinity, so the sum of $1 / p$ diverges! As noted earlier, this says more than simply that there are infinitely many primes.
Dirichlet's Theorem is a variation in which one fixes a "modulus" m and asks:
For each remainder r between 0 and $m-1$, what "proportion" of the primes satisfy:

$$
p \% m=r
$$

For example, suppose $m=3$. Then:
(0) 3 is divisible by 3 .
(1) $7,13,19, \ldots$ satisfy $p \% 3=1$.
(2) $2,5,11,17, \ldots$ satisfy $p \% 3=2$.

As another example, suppose $m=4$. Then:
(0) Nothing
(1) $5,13,17,29, \ldots$ satisfy $p \% 4=1$.
(2) 2 satisfies $p \% 4=2$. Nothing else.
(3) $3,7,11,19, \ldots$ satisfy $p \% 4=3$.

Dirichlet's Theorem. For each fixed modulus m.
(i) If $\operatorname{gcd}(m, r) \neq 1$, then at most one prime satifies $p \% m=r$.
(ii) For all the remainders r that do satisfy $\operatorname{gcd}(m, r)=1$, the numbers of primes between 1 and n satisfying $p \% m=r$ are approximately the same. In an appropriate sense, the infinitely many primes are evenly distributed among these remainders.
Remark. The proof of (i) is easy. If $p \% m=r$, then:

$$
\operatorname{gcd}(\mathrm{m}, \mathrm{r})=\operatorname{gcd}(\mathrm{m}, \mathrm{p})=\mathrm{d}
$$

and so d divides p. But if p is prime, then we must have $d=1$ or $d=p$.
(ii) is hard.

Our Challenge. To write Python code to check (ii) numerically.
The Strategy. Use the Sieve of Eratosthenes to create a list of lists.
Dirichlet $=[]$
for r in range(m):
Dirichlet $=$ Dirichlet $+[[]]$
This creates a list of m empty lists, with Dirichlet[r] $=[]$.
Now we feed into each Dirichlet[r] all the primes in the Sieve with p\%m $=$ r.
Then we compare the values len(Dirichlet[r]) as ranges from 0 to $m-1$ and numerically "see" the even distribution of the primes from Dirichlet's Theorem. .
Exercise. Write the code to do this.

