Lesson Six

Math 6080 (for the Masters Teaching Program), Summer 2020

A Mathematical Interlude. The math behind Euclid's algorithm is this:
Lemma. If n and m are integers, let $r=n \% m$ (in Pythonese). Then:
All common divisors of n and m are common divisors of m and r and vice versa.
Proof. Let $q=n / / m$ (in Pythonese), so that:

$$
n=m q+r
$$

If d is a common divisor of n and m then d also divides $r=n-m q$, therefore d is a common divisor of m and r. Conversely, if d is a common divisor of m and r, then d is also a divisor of $n=m q+r$, so d is a common divisor of n and m.

In particular, the greatest common divisors are the same:

$$
\operatorname{gcd}(n, m)=\operatorname{gcd}(m, r)
$$

which is the basis for the Euclidean algorithm
Remark. This Lemma is only applicable when $m \neq 0$. When $r=0$, the Euclidean algorithm terminates, because m divides n, and thus m is the gcd of n and m.
Enhanced Lemma. In the Lemma above, suppose that x and y are integers, and:

$$
a x+b y=n \text { and } c x+d y=m
$$

Then

$$
(a-c q) x+(b-d q) y=n-m q=r
$$

Remark. If you prefer, we can think of this in terms of matrices. If:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
n \\
m
\end{array}\right]
$$

then:

$$
\left[\begin{array}{cc}
c & d \\
(a-c q) & (b-d q)
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
m \\
r
\end{array}\right]
$$

This gives rise to a strategy for solving the equation:

$$
a n+b m=\operatorname{gcd}(n, m)
$$

Enhanced Euclid's Algorithm.

Step 1. Set $x, y=n, m$ (storing away the values of n and m).
Step 2. Initialize the variables $a, b, c, d=1,0,0,1$ so that:

$$
a x+b y=x=n \text { and } c x+d y=y=m
$$

Step 3 (to repeat until $m=0$). Replace:

$$
\begin{gathered}
a, b, c, d=c, d, a-c *(n / / m), b-d *(n / / m) \\
n, m=m, n \% m \text { and }
\end{gathered}
$$

(it is important to do them in this order!) and repeat until $m=0$, at which point:
(1) n is the gcd, and (2) $a x+b y=n=\operatorname{gcd}(x, y)$ is the desired expression.

Now write the Python code to do this....

