Lesson Eleven

Math 6080 (for the Masters Teaching Program), Summer 2020

The Sieve of Eratosthenes. We start with a list of the integers from 0 to 999. (You can prompt the user to make this any list from 0 to n.)

```
Sieve = []
for i in range(1000):
```

Sieve $=$ Sieve $+[\mathrm{i}]$
Our goal is to put zeroes in this list wherever there is a non-prime.

$$
\text { Sieve }[1]=0
$$

The first non-zero element we find is 2 , which we use to turn all multiples of 2 (other than 2 itself) into zeroes. The next non-zero element after that is 3 , which we use to turn all multiples of 3 (other than 3 itself) into zeroes. The next non-zero element after that is 5 , etc.

```
\(\mathrm{d}=2\)
while \(\mathrm{d}^{* *} 2<=\mathrm{n}\) :
        if \(\mathrm{d}==0\) : continue
        else:
            \(\mathrm{i}=2\)
            while \(\mathrm{d} * \mathrm{i}<\mathrm{n}\) :
            Sieve \(\left[\mathrm{d}_{\mathrm{i}}\right]=0\)
            \(\mathrm{i}=\mathrm{i}+1\)
        \(\mathrm{d}=\mathrm{d}+1\)
print(Sieve)
Try it out!
```

Exercise. Convert this, by use of the .pop command, into a list of the primes less than 1000 (removing all the zeroes). This is, I claim, a very efficient way to conjure up lists of primes. We will use the Sieve with the zeroes intact in our first extended project in Lesson Twelve.

