Math 6130 Notes. Fall 2002.

2. Another Hilbert Theorem. When we think about projective geometry,
we need to regard the polynomial ring as a graded object:

00
C[Io,xl, ,LUn] = @ C[l’o,l’l, ...,.Tn]d
d=0

decomposing an arbitrary polynomial into a (finite) sum of homogeneous
polynomials (i.e. sums of monomials of the same degree), so we get:

dim(Clxzg, x1, ..., Tn)a) = <n * d) = #{monomials of degree d in xy, ..., x,}
n

An ideal I C Clzg, x1, ..., ;] is homogeneous if it, too decomposes:

I = @Id = @] N C[xo,xl, -'-;fn]d
d=0 d=0

and then by the Hilbert Basis Theorem, such an ideal satisfies:

I = <Fla 7Fm> = {Zgzﬂ | g1y 9m S C[gjOaxla 73:71]}
=1

for homogeneous polynomials Fi, ..., F}, (usually not all of the same degree).

More generally, a module M over C[zg, x1, ..., x,] is graded if:

M =P M,
deZ
as a sum of complex vector spaces, such that the multiplication maps send:
Clzo, 1, ..., xn)a X M — Mgie. A homomorphism ¢ : M — N of graded
Clzo, x1, ..., x,]-modules is a graded homomorphism if each ¢(My) C Ny.

Examples: (a) A graded module M can be twisted to yield another graded
module:

M(e) = @ Md+e

deZ

so that, for instance, if we regard S = C[xzg, 21, ..., 2,] as a graded module
over itself, then we obtain the modules:

5(6) = @ C[l’o,l’l,...,l‘n]d+e

d=—e



(b) A homogeneous F € Clzg, 1, ..., T, yields graded homomorphisms:
M(—e) = M; mw— Fm
In particular, the graded homomorphism:
S(—e) = S; g Fg

is an isomorphism onto the ideal (F) C S. The generators of a homogeneous
ideal I = ([, ..., F;,) determine a graded homomorphism of graded modules:

i=1 =1

whose image is I, and whose kernel is the “graded module of relations.”
(c) The kernel, cokernel and image of a graded homomorphism are graded.
Definition: If the dimensions dim(M;) are all finite, then:
ha(d) := dim(My)
is the Hilbert function of the graded module M.

Hilbert’s Polynomial Growth Theorem: If M is a finitely generated
graded Clzo, x1, ..., x,]-module, then the dimensions dim(M,;) are all finite,
and there is a dy (depending upon M) and a polynomial Hy;(d) such that:

har(d) = Hy(d) for all d > dy

Proof: There is a natural basis for the free abelian group of polynomial
functions P : Z — Z. Namely,

() 6)- ()4

with the pleasant property, noticed by Pascal, that if:

P(d) = ag + a; <ff> ot <i>

P(d+1) = P(d) = a1 + as <Cll> + .ot am (mi1>

then



We prove the theorem by induction on the number of variables in the
polynomial ring Clzg, x1, ..., ¥,], noting that the Hilbert function of a finite
dimensional vector space V over C is 0 in large degrees, so Hy (d) = 0.

Suppose n > 0 and consider the exact sequence:
(x): 0= K—M=M(1)— N(1) =0

where the map in the middle is the map from Example (b) applied to the
module M(1) (and the polynomial z,) and K and N(1) are the (graded!)
kernel and cokernel, respectively. Multiplication by x, acts trivially on K
and N(1), so they are (finitely generated) graded modules over the ring
Clzo, x1, ..., xn] /{x) = Clxo, ..., z,_1], and we are ready to apply induction.

Namely, the Hilbert functions are additive on exact sequences, so:
har(d+ 1) — ha(d) = hi(d) — hnay(d)

and thus by induction hy(d) is either always infinite or always finite. But
for sufficiently small d (i.e. smaller than the degrees of all the generators)
har(d) = 0. So hys(d) is always finite. Next, if dy is chosen so hi(d) = Hk(d)
and hy(y(d) = Hy(1y(d) are polynomial functions for d > dy, then their
difference is a polynomial, so:

ha(d +1) = har(d) = a1 + ag <Cli> —I—...~|—am< d )

m—1

for some integers ay, ..., a,, and all d > dy. Setting ag = hy(dy) — > a; (d;’)
then gives:

hM(d) = HM(d) = ag + a1 <;Z> +...+a, <i>

for all d > dy, as desired.
Definition: H),(d) is the Hilbert polynomial of the graded module M.

Observation: Hilbert polynomials, like Hilbert functions, are additive on
exact sequences of graded modules.

Examples: (a) The Hilbert polynomial of S = Clxg, x1, ..., ;] itself is:

Hg(d) = <d—|7;n> = %d" + lower order

and we can take dy as small as —n since 0 = (2) = (i) =..= (";1)



(b) The Hilbert polynomial of the quotient:
0—-(F)—S—S/(F)—0

by a principal homogeneous ideal generated by F' of degree e is:

d+ d—e+
Hs/(F)(d) = ( nn) — < Z n) = (nfl)!dn_l + lower order

valid for dy > —n + e.
Before we leave graded rings, I want to consider their homogeneous ideals:

Definition: The unique maximal homogeneous ideal:
(X0, ..oy Tp) C Clzg, X1, ..., Ty

is called the irrelevant maximal ideal. It contains every homogeneous ideal.

The Projective Hilbert Nullstellensatz: The homogeneous prime ideals
P c Clzg, 1, ..., x,] that are maximal with the property of being properly
contained in the irrelevant maximal ideal are all of the form:

(Y1, ooy Yn) C (X0, ooy Tp) C Clxg, X1, ...y Ty

where the y; = >"_, a;;z; are independent linear forms.

Proof: Such ideals are evidently prime and maximal (in this sense).
To see that they are the only ones, consider the ordinary Nullstellensatz.
More precisely, if P C (zg, ..., x,) is any homogeneous prime ideal properly
contained in the irrelevant maximal ideal, then V(P) contains the origin
and at least one other point p € C"™!. Otherwise, by Corollary 1.4, we'd
have a contradiction with P = I(V(P)) = (zo, ..., x,). Once a homogeneous
ideal I satisfies p € V(I) C C™*! then V(I) must contain the entire line
Cp={\p| A € C}, and then I must be contained in the ideal I(Cp), which
is already of the form (yi,...,y,) where the y; are any n independent linear
forms whose common solution set is the line Cp. So P = (y1, ..., Yn)-

Note: The maximal ideals are thus precisely the homogeneous prime ideals
in Clzg,x1, ..., T,) such that V(I) C C™"! is a single line through the origin.
Recall that the ordinary maximal ideals in C[zy,...,2,| are precisely the
ordinary prime ideals such that V' (/) C C" is a single point.



Definition: Complex projective space CP™ is the set of lines through the
origin in C™*!. That is, it is the set of equivalence classes:

{C”+1 - 0}/ ~ where p ~ \p for A € C*
and if 0 # p = (po, ..., Pn), then the equivalence class containing p is denoted:

(po:p1:...:pn) € CP"
Remarks: (a) CP" is a union C" U CP"! of:

C"={(p1,..,pn)} ={(1 :p1:...:py)} and

CP"'={(0:py:...:pn)}
since the first coordinate is either non-zero or zero, and if it is non-zero, then
it can be set to 1 (in the equivalence class) and the other coordinates are
then fixed. Geometrically, this means that we should think of CP" as being
“ordinary” C" with CP"! giving us the extra “points at infinity” which we
identify with the slopes of the lines through the origin in C". We can, of
course, continue this process to get a “stratification:”

cCp"=cCcruCc"'u..uctuc’
by successive points at infinity.

(b) As in the proof of the Nullstellensatz above, it makes sense to say
that (po : ... : pn) € V(I) or (po : ... : pp) & V(I) for a homogeneous ideal I,
since this property does not depend upon the representative of (pg : ... : pp).

Corollary 2.1: Given homogeneous Fi, ..., F, € Clzg, x1, ..., x,], then either
there is a point (pg : ... : p,) € CP" so that Fi(py : ... : p,) = 0 for all ¢ or
else there is an N so that:

xjv = Z Gi;F; can be solved with homogeneous G;; € Clzg, 1, ..., T,
i=1
(and finding the Gj; is hard, of course)

Proof: If there is no such point, then (F}, ..., F,,,) does not belong to any
of the homogeneous maximal prime ideals, by the Projective Nullstellensatz,
so it follows that V ((FY, ..., Fy,)) = {0} € C""!. That is, by Corollary 1.4:

<F1, ,Fn> = <I0, ,$n>

so that l’ivl € (F1,...,F,), and then we let N be the maximum of the N;.



Finally, consider the following two processes:

Homogenizing: Instead of xy, ..., x,, let n variables be labelled oy e o

Then a (non-homogeneous) f € C[It, .., 2] of degree d homogenizes to

h(f) == zdf € Clxg, z1,...,7,]q. More generally, an ideal I C ClZ, ...
homogenizes to:

W) == (h(f) | f € I) C Clzg, 21, ..., 7]

and we know that finitely many of the h(f;) will suffice to generate h(I).

The geometric significance of this process is as follows. If
V(I)ccr
is the algebraic set associated to I, then homogenizing produces:
V(h(I)) Cc CP"

with the property that V(h(I)) N C" = V(I). In other words, homogenizing
the ideal tells us how to add points at infinity to an algebraic set in C" in
order to get an algebraic set in CP".

Dehomogenizing: A homogeneous I C Clzg, z1, ..., x,] dehomogenizes to:

€ Tn
(EX) I

dd[)::{F(l——,

) T,
) _’ .. I
Zo Zo

)\Fe%cc

Zo K Zo

(with respect to xy) which is already an ideal. Geometric Interpretation: the
intersection of the algebraic set V(I) C CP" with C" is V(dy(I)) C C™.

These operations are nearly inverses. For all ideals I C C[i—;, ceey 2—5]

do(h(1)) = 1

(Geometry: when we add points at infinity, we don’t add extra finite ones.)
For homogeneous prime ideals P C C|xg, x1, ..., Z,,] not containing xy:

h(do(P)) = P

and in general, I C h(dy(I)). (Geometry: If we intersect such a V' (P) with
C" and then add points at infinity, we get V(P) back. Otherwise we may
lose some of the points at infinity by this process.)



Example (The Twisted Cubic): Consider the set:

2 3
V:{(E, (E) , G) ) |£eC}cC3
s \s s s
(the affine twisted cubic) and its “one point compactification:”
Vi={(s*:s%:st> %) | (s:1) € CP'}=VU{(1:0:0:0)} c CP?

(the “projective twisted cubic”). It is easy to see that (in variables £ %2 23);

zo’ zo’ To
=r=(2- (G2 () ()
Zo Zo Zo Zo Zo

since, for example I is the kernel of the homomorphism:

H r,  t (t>2 T3 (t)3
—-Cl-|; —— =, == (-], == |-
S o) S X S Zo S

and V = V/(I). When we homogenize this ideal, we do not get:

Ty T T3
SEE

1’07 o Xo

J = {zomg — 23, 2370 — T172)

because, for example, (i—z)z — (m—l) (””—3) € I but 22 — 123 € J since it is not

e T
a linear combination of zyxg — 2% and x3z9 — 7172. So we do not homogenize
an ideal in general just by homogenizing its generators. On the other hand,

2 2
(xomy — X}, T3T9 — T1T2, Ty — T1X3)
is prime, and is the kernel of the homomorphism:
3

Clwo, 71, 72, 23] — C[s,t]; 10 > 8°, 21 = 5, 29 > st%, 13+ >

so this is the homogenized ideal, and the ideal of the projective twisted cubic.
Moreover, from the homomorphism above:

(Clwo, 21, @5, 5]/ 1(V)) = Cls, 1]
so the Hilbert polynomial of Clxg, zy, x2, z3]/I(V) is:
HC[acoJl,xg,x:;}/I(V) (d> = HC[Svt} (Sd) =3d +1



Exercises 2.

First, a little review. A sequence of homomorphisms of abelian groups:
(**)OﬁAoﬂ)Alﬁu-ﬁAn—)()
is a complex if each ¢;,1 0 ¢; = 0, and it is exact if, in addition, each

ker((biﬂ) = 11’Il<(b2)
so that, in particular, ¢, is injective, and ¢, is surjective.
1. Check the homological assertions of this section. Namely, check that:

(a) The image, kernel and cokernel of a graded homomorphism of graded
Clzg, x1, ..., xy]-modules ¢ : M — N are all graded modules.

(b) If (xx) above is an exact sequence of finite dimensional vector spaces
V; over C (with linear maps ¢;), then the dimensions of the V; satisfy:

>_(=1)'dim(Vi) =0

(c) If (x*) above is an exact sequence of graded Clzg, 21, ..., T,]-modules
M* and graded homomorphisms ¢* : M* — M (I raised the subscript in
this case so it won’t be confused with the degree) then

Z(—l)ihMi(d) =0 and Z(—l)iHMi(d) =0
(assuming that the Hilbert functions and Hilbert polynomials exist).

(d) If F' € Clzg, 21, ..., 2,)c and M is a finitely generated graded module
over Clzg, x1, ..., 2], let N = M/FM. If the Hilbert polynomial of M is:

Hy(d) = %dk + {lower order terms}

show that deg(Hy(d)) > k—1 and that if F'm # 0 for all m # 0 in M, then:

ea

(k- 1)

Hy(d) = d"~* + {lower order terms}

so Hy(d) has degree exactly k — 1 in this case.

8



2. Find generators for the homogeneous ideals (V') and Hilbert polynomials
of Clxg, 1, ..., | /I(V) for each of the following algebraic subsets V' C CP".

(a) {p1,...,pm} C CP", a set of (distinct) points.

(b) the pair of skew lines {(a:b:0:0)}U{(0:0:c:d)} c CP?

(c) the pair of intersecting lines {(a:b:0:0)}U{(0:b:c:0)} C CP?.
(

d) the rational normal curve in CP", i.e.
{(s":s" M:s" Mo t") | (s: t) € CP}

(this is the natural generalization of the projective twisted cubic)
3. Suppose Fi, ..., Fy, € Clzg, 21, ..., x,] are homogeneous of degrees e, ..., ,.

(a) If I = (FY, ..., Fy,) and m < n, show that:

deg(HC[xo,xl ..... xn]/I(d)) Z n—m
and if each Fj;; is not a zero divisor in C|xg, 1, ..., ,|/(F1, ..., F;) then:

deg(Hezozn,...on)/1(d)) = %d”_m + {lower order terms}

Ideals with generators with this property are complete intersection ideals.

(b) For the homogeneous ideals I(V') in Exercise 2.2, show that:

(i) 1(V) is a complete intersection when V' is the pair intersecting lines,
but (V') is not a complete intersection when the lines are skew.

(ii) Prove that if n > 3, then the ideal of the rational normal curve in
CP" is not a complete intersection ideal.

(¢) Show that V(Fy) N...NV(F,) # 0 for any choice of homogeneous
polynomials Fi, ..., F,, in (a). (Hint: Use (a) and the Proj Nullstellensatz)

(d) If F, ..., F,, generate a complete intersection ideal in Clxg, x1, ..., Z,],
so that in particular, Clxg, 21, ..., z,|/(F1, ..., ) = 1 €;, then show that
V((Fy,...,F,)) C CP" is a finite set, consisting of at most [[;~, e; points.



4. Prove the assertions in the text about homogenizing and dehomogenizing;:

(a) Prove that for ideals I C C[ﬁ—;, fv—g]
do(h(I)) =1

(b) Prove that for homogeneous prime ideals xy & P C Clxg, 21, ..., Zp),
h(do(P)) = P
5. (a) For homogeneous ideals I C Clzy, x1, ..., T,], prove that
VI ={feClxg,a1,....x5] | f¥ €I for some N > 0}

is also a homogeneous ideal.

(b) If V C C™*! is a union of lines through the origin, prove that:
I(V)={f € Clxo, z1, ..., xs] | f(ao,a1,...,a,) =0 V(ag,a,...,a,) € V}

is a homogeneous ideal.

(c) For V. C CP", let I(V') be the homogeneous ideal in (b) for the union
of lines in C"™! parametrized by V. Prove the “projective” Corollary 1.4:

For homogeneous ideals I C Clzg, 21, ..., ], either V/(I) = () € CP" or:

(In particular, I(V(P)) = P when P C (xy, ..., z,,) is a homogeneous prime.)
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