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11. Codimension One Phenomena. A property of the points of a variety
X “holds in codimension one” if the locus of points for which the property
fails to hold is contained in a closed subset Z C X whose components all
have codimension 2 or more. We’ll see several examples of this:

e A normal variety X is non-singular in codimension 1 (Proposition 11.2).

e If X is normal then a rational map ® : X — — > P" is regular in
codimension 1 (on X) (Proposition 11.3).

e If Y is nonsingular and ® : X — Y is a surjective birational regular
map and an isomorphism in codim 1, then ® is an isomorphism (Prop 11.4)

Blowing up a point is a simple example of a surjective birational regular
map which is not an isomorphism. We’ll consider this in some detail.

Definition: If X is any variety and Z C X is a closed subvariety, then the
stalk of Ox along Z is the ring:

OX,Z = U Ox(U) g C(X)
{U\UNZ#0}

Examples: (a) Ox x = C(X)

(b) If Z =2 € X, then Ox z = Ox, the stalk from §9.
Properties: This stalk shares many of the properties from §9.

(i) If V .C X is open and V N Z # (), then Ox z = Ovynz.

(ii) Each Ox 7 is a local ring with maximal ideal:

mz = {¢p € Oxz | #(Z) = 0 (where defined)}
(iii) For each ® : X — Y, let W = ®(Z) C Y. Then there is a pull-back:
®* : Oyw — Ox z with @ my Cmy
(iv) If X is affine, let 1(Z) C C[X] be the prime ideal of Z. Then:
Ox,z = C[X]yz C C(X)

Thus by the correspondence between prime ideals C[X];z) and prime
ideals in C|[X| contained in I(Z) (§7) there is an inclusion-reversing bijection:

{prime ideals P C Ox z} < {closed subvarieties W such that Z C W C X}

and in particular 0 < X and myz < Z.



So if codx(Z) = 1, then my; C Ox z is the unique (non-zero) prime ideal!
As an example of rings with one non-zero prime ideal, consider:
Definition: If K is a field, a function v : K* — Z is a discrete valuation if:
(i) v(ab) = v(a) + v(b) and
(ii) v(a 4+ b) > min(v(a), v (b))
for all a,b € K*. If v is not the trivial (zero) valuation, then:
A, ={a€ K" |v(a) >0} U{0}
is the discrete valuation ring (or DVR) associated to the valuation v.
Examples: (a) Fix a prime p. For a € Z — {0}, define
v(a) = the largest power of p dividing a
and v(}) = v(a) —v(b) for § € Q*. This is a discrete valuation and A, = Z,
(b) Fix a complex number ¢ € C, and for non-zero ¢ € C(x) set:

v(¢) = the order of zero or pole (counted negatively) of ¢ at

This is a discrete valuation and A, = Clx] ;e

(c) Again, for non-zero rational functions ¢ = § € C(x), let:

v(¢) = deg(g) — deg(f)

This is a discrete valuation and A, = Clz™"] 1.

Observations: (a) If a valuation isn’t surjective, its image is dZ for some
d > 0, so we may as well divide through by d to get a surjective valuation.

(b) In a DVR A, (with surjective valuation v), the (non-zero!) ideal:
m:={a€ A, |via) >0} CA,

is principal, generated by any element m € A, satisfying v(7w) = 1. Such an
element is called a uniformizing parameter. Note that m = () is the unique
(non-zero) prime ideal since every ideal in A, is one of:

m" = (1") ={a€ A|v(a) >n}

for a uniquely determined n. Thus, in particular a DVR is always Noetherian
and is a UFD (the factorization is b = un™ for unit v and unique n).



Proposition 11.1: Suppose A is a (local) Noetherian domain with a unique
non-zero prime ideal m C A. Then:

(a) For any f € m, the ring Ay is the field of fractions K = K(A).
(b) If I C A is any (non-zero) proper ideal, then VI = m.
(c) For each proper ideal I C A, there is a unique n > 0 such that:
m" C I but m"! Z 1
(d) If A is also integrally closed, then A is a DVR.
Proof: (a) A is a domain, and its prime ideals correspond to the prime

ideals in A that do not contain f. Only the zero ideal has this property, so
Ay has no non-zero primes, hence the zero ideal is maximal and Ay = K.

(b) Suppose f € m is arbitrary, and b € A. Then b~! = €K by (a),
so ab = f" for some n. In other words, f € /(b) for all f € m and b € A.
So m C /I for all ideals I and then m = /T unless VI = I = A.

(¢) It suffices to show that m™ C I for some n. But this follows from (b).
That is, if (ay, ..., a;) = m = VI (A is Noetherian!), then there are ny, ..., ny
such that each a;" € I, and then we may let n = 1+ > (n; — 1) to ensure
that m™ C 1.

(d) Assume A is integrally closed. We'll first prove that m is principal.
Pick an a € m, and find n from (c) so that m™ C {a) but m"~! € (a). Now
choose b € m"~! — (a) and consider ¢ = 2 € K (the field of fractions of A).
By the choice of a and b, we know that ¢ ¢ A. On the other hand, ¢m C A
since b € m"~t and m™ C (a). But ¢m & m, since if it were, we’d have:

Alp] = m[g] = m; Zaiqﬁi = Za%fbi
an inclusion of A-modules and since A is integrally closed, A[¢] is not finitely
generated, so this would violate Noetherianness of A. Thus there is a unit

u € A and m € m such that ¢7 = u. But now for any a € m, we have
pa=a €A s0a=d¢!=(dut)m. Som = (n).

Now let’s define the valuation. If a € A, then either a is a unit or a € m.
In the latter case, we can write a = ma;, and repeat the question of a;. This
gives an ascending chain of ideals:

(a) C {ay) C (ag) C ...

that eventually stabilizes since A is Noetherian.



But this can only happen if {(a,) = A (since 7=! ¢ A). Thus a,, is a unit,
and we can write:
a=rmn"a, =un"
and the value of n in this expression is evidently unique. Thus we may define:
v(ur™) = n and extend to a valuation on K* with the desired A = A,,.

Proposition 11.2: A normal variety is non-singular in codimension 1.

Proof: Since the non-singular points of any variety are open (Prop 10.1)
it suffices to show that given a normal variety X, there is no codimension 1
closed subvariety Z C X such that Z C Sing(X).

For this, we may assume X is affine, so C[X] is integrally closed and then
for any closed subvariety Z C X:

OX,Z = C[X]](Z) C C(X)

is also integrally closed (see Proposition 9.4). When Z has codimension 1,
this is a Noetherian ring with a unique prime, so by Proposition 11.1, the
ring Ox 7 is a DVR. In that case, let 7 € mz be a uniformizing parameter.
Then m € Ox(U) for some U N Z # ), and by shrinking U if necessary, we
obtain an open subset V' C X such that:

e V =U; C X is a basic open set (hence an affine variety)
e VNZ#D
o [(VNZ)=(m) C C|[V]

So let’s replace X by V and Z by ZNV. Here’s the main point. If 2 € Z
and the images of fi, ..., f, € C[X] under the map C[X| — C[Z] — Oy, are
a basis for the Zariski cotangent space T Z = m,/m? of Z at z, then because
I(Z) = (m) it follows that Oz, = Ox /7 and so the images of fi,..., fi, 7
under C[X] — Oy, also span the Zariski tangent space 77X of X at z.

In other words, the dimensions of the Zariski tangent spaces satisfy:
dim(Ox,) < dim(Ogz,) + 1

But if z € Z is a non-singular point of Z, then dim(Oz,) = dim(Z) and
then the inequality above is an equality since dim(X) = dim(Z) + 1 and
z € X is also a non-singular point of X. Since there is a nonempty open set
of nonsingular points in Z, it follows that Z ¢ Sing(X), as desired.



Proposition 11.3: If ® : X — — > CP" is a rational map and X is normal,
then @ is regular in codimension 1.

Proof: Recall that if X € CP™ then in a neighborhood of of each point
p € X in the domain of X we can write ® = (F} : .... : F},) for some d and
F; € C|xy, ..., x,]q and conversely, so in particular, the domain of ® is open.
Thus to prove ® is regular in codimension 1, we only have to prove that & is
regular at some point p € Z of each codimension 1 closed subvariety Z C X.

By Proposition 11.1 each Ox z = C(X), for some valuation v on C(X)*.
Consider now the valuations of the ratios:
F.

I/(FZ) € C(X) for some expression ® = (Fy : ... : F,)
J
valid near some point of X. If we choose V(?O ) minimal (certainly negative!),
Jo
then since they satisfy: y(?o) +u(E) =v(d) > 1/(?0 ), each v(£1) > 0.
Jo . 20 Jo Jo 0
Thus the components of the rational map:
Ly E,
o X-——>C"=U;, CCP" — e, —

are all in Ox z, so for some open subset U C X with U N Z # 0, each
component belongs to U, and then ® is regular all along U, as desired.

Example: Consider the map to the line through the origin:
7:C*— —>CPY (z,y)— (v :y)
As we've seen, this cannot be extended to a regular map across (0,0). But
if we restrict this to the (nonsingular) curve C' = V(y* — z(z — 1)(z — \)):
7le : C — CP!

becomes regular across (0,0). That’s because (as in the Proposition):
2

T = Y
(x —1)(x—A)
in a neighborhood of (0,0), and then in that neighborhood:
2
) )
= tyY) = 01

so m(0,0) = (0 : 1) (the vertical tangent line!). Notice that we couldn’t do
this if A = 0, but in that case C' is singular at (0, 0).



Remark: Putting Propositions 11.2 and 11.3 together in dimension 1 gives
a very striking result. Namely, if X € CP" is any quasi-projective variety
of dimension 1 (i.e. a curve), let C' be the normalization of the closure of X.
Then C'is a non-singular (Proposition 11.2) projective curve with:

C(C) ¥ C(X)

Moreover, if C” is any other non-singular projective curve with:
C(C") = C(0O)

then the associated birational map:
o:C——>C

is an isomorphism(!) (by Proposition 11.3 applied to ® and ®~'). Thus up
to isomorphism, there is only one non-singular projective curve with a given
field of rational functions. Moreover, if: C(C) C C(C”) is an inclusion of
such fields, then again by Proposition 11.3, the associated rational map:

¢:0"—C
is actually regular, so the field inclusions correspond to (finite) maps of the

non-singular projective “models” of the fields. We will study more properties
of non-singular projective curves later.

Proposition 11.4: If & : X — Y is a birational surjective regular map
and Y is non-singular, then if ® is not an isomorphism, it is also not an
isomorphism in codimension 1.

Proof: If ® is not an isomorphism, let ¢ € Y be a point where ®~!
is not defined and let p € ®71(q) (if ®~! were defined everywhere, then it
would be a regular inverse of ®!). Consider affine neighborhoods ¢ € V' and
peU C ®(V), and let U C C" be a closed embedding. Then locally:

O = (g1, ) V——>UcCC"

and to say that ®7'(q) is not defined is to say that some ¢ = ¢; & Oy,. But

we've proved that Oy, is a UFD in §10, so we can write ¢ = 5 in lowest

terms, with f,g € Oy,. When we pull back: ®*(¢) = x; € C[U] is the ith
coordinate function, so:

*(f) = 2:2"(g) € Ox,p
and we can shrink V' (and U) further so that f,g € C[V].



Consider the hypersurface V(®*(g)) C U. We know p € V(P*(g)) since
otherwise g(q) # 0 would give 5 € Oy,. Each component Z C V(®*(g))

(containing p) has codimension 1 in U by Krull’s Principal Ideal Theorem.
On the other hand, the image:

®(Z) cV(f)nV(g)
must have codimension > 2 in V. That’s because if we write:

g=ugr--gn
as a product of irreducibles (and shrink V' again so that each g; € C[V]) then

the V(g;) are the irreducible components of V(g) and f & (g;) = 1(V (g;)) so
V(f)NV(g:) # V(g:), and V(Z) is contained in one of these.

Finally, by the theorem on the dimension of the fibers of a regular map, we
see that since dim(Z) > dim(®(%)), it follows that every z € Z is contained
in a fiber of ® of dimension > 1, so ® is not an isomorphism anywhere on Z.

We've actually shown that the set of points p € X where ® fails to be
an isomorphism is a union of codimension 1 subvarieties of X. This is called
the exceptional locus of the birational map &.

Moral Example: It’s time you saw the Cremona transformation:
1 1 1
®:CP*— -~ >CP*(z:y:2)r (—:~:~)=(yz:xz: 1Y)
r Yy x
By Proposition 11.3, this is regular in codimension 1, and indeed it is:
domain(®) = CP* - {(0:0:1),(0:1:0),(1:0:0)}
Note that ®? = id, but the exceptional locus of ® are V(z) UV (y) U V(z)
(this is only morally an example, since ® isn’t regular and it isn’t surjective).

Main Example: If X is non-singular, then any rational map:
. X -——>CP"

gives rise to a birational, surjective regular projection ¢ = 7, : I's — X from
the closure of the graph of ® (in X x CP") to X. Evidently, o restricts to
an isomorphism from I'g to the domain of ®, and the Proposition tells us
that the exceptional set of ¢ is a union of codimsion 1 subvarieties, which is
to say that the “boundary” I's — 'y is a union of codimension 1 subvarieties
mapping to the “indeterminate locus” X — dom(®) of the rational map ®.



The simplest instance of this is:

The Blow up of a point in C": Consider the rational map:
¢:C"——> CPn_l; @(pl’ apn) = (pl S :pn)

In other words, ® maps a point p € C" (other than the origin) to the point
in projective space corresponding to the line through p and the origin. Then:

blo(C") :=Tg =T'p U ({0} x CP" 1)
because 0(0) C ({0} x CP"!) is required to have codimension 1 in bly(C")
(which has dimension n). This exceptional variety “nicely” fits with I'g:
Proposition 11.5: bl,(C") C C" x CP" ! is:
(a) non-singular and
(b) given by explicit equations (which we give in the proof).
(0 is sometimes called a blow-down, o-process or monoidal transformation)

Proof: Consider the ring Clzy, ..., Zpn, Y1, ..., yn| graded by degree in y,
as in the proof of Proposition 6.7. We've seen that the closed subsets of
C" x CP" ! are all of the form V(I) for homogeneous ideals I. Then:

blo(C™) =V := V({z3y; — z;5:))

since this contains ' (and no other points over 0 # p € C") and is closed
and irreducible. Note that V' does contain 0 x CP" ™', as we proved it must(!)
We see that V' is irreducible and nonsingular by covering it with open affine
subsets. Namely, let U; = C" x (CP"™' — V(y;)). Then:

ClUJ/T(VNU;) 2 Clay, ooy @, 2y oy 2] (@ (Z2) = 2, ooy 2 (PL) — 25 (22))

Yi Yi Yi Yi Yi
but all relations follow from the first ones, solving x; = x,Z—J so this ring is a
domain, V NU; C U; is closed and irreducible, and:

ClU)|/I(V NU;) = C[V AU = Clay, 2, ..., /]
Yi Yi
so that bly(C™") N U; =V NU; =2 C" is, in particular, nonsingular!
Remark: 0/)(C") defined above is not an affine variety, since there is a

closed embedding CP™™! < bly(C™). It is quasi-projective, of course, as it
sits inside C" x CP"! as a (non-singular) closed subvariety.



First Generalization: Blowing up a point in CP". Consider
m:CP"— — > CP"!

the projection from a point p € CP". With suitable basis, we can assume
p=0¢€ C" C CP". It follows that:

bl,(CP") :=T, C CP" x CP"!

is a non-singular projective variety, with open (not affine!) cover given by:
bl,(CP") = bly(C") U (CP" — p)

and these open sets patch by the projection o : I'; = CP"™ — p.

That was the easy generalization. Next:

Proposition 11.6: If X € CP" is an embedded variety (maybe singular)
of dimension m and p € X is a (maybe singular) point, then the variety:

bl,(X) := Ty, = 'y U PC,X C bl,(CP")

T x T x

where PC,X C {p} x CP" ! is the “projectivized tangent cone” of X at p.
If p is nonsingular then PC,(X) C CP"' is naturally identified with the
projective tangent space to X at p, and bl,(X) is nonsingular along PC,(X).

Proof: Let Y = XNC" for p =0 € C* C CP" as above. It follows from
Proposition 11.5 that the blow-up of Y at p is the unique component:

bly(Y) C V({way; — xj9i; [ (1, 20)) | f € 1(Y)))

containing the graph of 7|y : Y — — > CP™ ' This is covered by:

bL(Y) N U; € V({f (2 ...,xi%») C C" =bl,(C")N U
Expand f as a sum of homogeneous polynomials f = fq, + fa,+1 + .- fa-
with fgq, # 0. Since 0 € Y we have dy > 1 and then:

Yy Yn Yy Yn Y Yn
Flai==, i) = 2l (fa (o 0 @ifay (5 20) + 0

i i i Yi i Yi
gives:
Y1 T f( i%a ) zz_n)
V(I(fl@i= . zi—))) = V(z) UV({ 7 )
Yi Z; Z;



Consider the inclusion of polynomial rings (with z; = % for convenience):
A= Clxiz1y ooy TiZio1, Tiy TiZig 1y ooy TiZn) C Cl21, ooy Zim1, Tiy Zig1y ooy 2n) = B
The ideal P = {f(z;z1,...,z2n) | f € [(Y)} C A is prime by assumption,
and the ideal Q = (== f(w;21,...,x:2,) | f € I(Y)) C B is equal to P,, N B
for the natural inclusion B C A,,. So it is prime, too.
Since V(z;) = 77 1(0) € C" x CP™ ! and V(Q) is irreducible, we get:
_ Yy Yn
bl,(Y)NU;, =V (Q) and o *(0)NU; =V(Q)NV(x;) = V((fdo(j> e y—)))

Thus 0=1(0) = V({fa(v1,--,9n))) = PC,X C CP"!is the projectivized
tangent cone to Y (or X) at p. To repeat, the fy (x1,...,2,) are the leading
terms in the Taylor polynomials at p of the equations of Y C C™.

For the last part, notice that if F' € I(X) and f = F(1,2y,...,xz,) € I(Y)

then "o o
h= ; Ox; (p)z: = ~ du, (p)zi (up to a scalar)
o " OF " OF
V(g Ox; (p)x;) = W(V(; oz, (p)x;))

from which it follows that PC,(X) C 7(0,) (see Exercise 10.5). But if p is
a nonsingular point, then 7(0,)) 2 CP™ ! so PC,(X) = 7(0,) since they
have the same dimension! Finally, if p is non-singular, then:

(@) = (21, f(yy— %) | f e 1Y) = I(PC,(X)NT])

(2 3

so the ideal of the non-singular subvariety PC,(X) N U; C bl,(Y)NU; is
generated by x;, and then as in the proof of Proposition 11.1, it follows that
bl,(Y) is non-singular along PC,(X).

Examples: (a) If Y = V(y*> — 22 + 2*) C C? is the nodal cubic, then:

bzo(Y)ZV(y—x%,@) —1+a:)uV(x—y&,1—<@> +y<&>)

Y1 \U%N1 Y2 Y2 Yo

is non-singular (the first open set is a parabola!), and:

PC,(Y)=V(y*—2%)=(0:1)U(1:0) C CP" consists of two points

10



(b) If Y = V(y* — 2°), then:

2 5
waY)sz—nﬂ?<%ﬁ —fﬁuvu—y@nr—f<@)>
A n

and this is singular at the exceptional locus:
PC,(Y)=V(y*) = (1:0) € CP!

Notice that PC,(Y) is a single point (evidently nonsingular) but bly(Y") is
singular at this point. This is no contradiction since the ideal of the point is
not given by a single equation!

Final Remark: We can view the blow-up bl,(X) as a surgery, removing the
point p € X and replacing it with the codimension 1 projectivized tangent
cone PC,(X) C bl,(X). We can ask whether blowing up X along an isolated
singular point p € X “improves” X, in the sense that bl,(X) is less singular
than X was. The situation is somewhat complicated in dimension > 3, but in
dimension 2, the answer is yes. That is, if we start with an arbitrary projec-
tive surface X and normalize, then by Proposition 11.2, the resulting normal
surface S has only finitely many (isolated) singularities, and then blowing up
these singularities (and any singularities that occur in the exceptional loci)
will eventually produce a non-singular projective surface S,,:

S = bly, (Sum1) = Suoy = bly_(Suz) = S1 = - --bly (S) = S

Similarly, if & : S—— > S’ is a rational map of normal projective surfaces,
then by Proposition 11.3, the indeterminacy locus of @ is a finite set of points,
and it is also true that after finitely many blow-ups, we obtain a regular map:

Sy = bl,, (Sn-1)

db:S — > 9

Thus with the assistance of blow-ups at points, the situation is somewhat
similar (but more complicated) than the situation for curves.
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Exercises 11.

1. If X is a normal variety, let:

Div(X)= @ 2z

cod 1 irred VCX

i.e. Div(X) is the free abelian group generated by the codimension 1 closed
subvarieties of X. Prove that there is a well-defined homomorphism:

div: C(X)* — Div(X); div(¢) = ;VZ(@

where vy is the discrete valuation defining Ox 7. Identify the kernel of div
and prove that if X is an affine variety, then:

C[X]isa UFD <« div is surjective

(the quotient Div(X)/div(C(X)*) is called the “class group” of X).
2. Consider the projection from p=(1:0:0:0):

7:CP'xCP' =V (2w —yz) ——>CP? (a:b:c:d) (b:c:d)
Prove that bl,(CP' x CP"') is isomorphic to the “compound” blowup:
X = 51071(0:1:0)(bl(lzozo)(CP2))

(this is the blow-up of CP? at the two points (0:1:0) and (1:0:0)).
3. If X = C(V) c PC" is the projective cone over V C CP"!, show that

PC,(X)=V
where p = 0 € C" C CP" is the vertex of the cone and show that:
7y 1 bl,(X) — CP™!
has fibers isomorphic to CP!. In fact, find isomorphisms:

bl,(X)NU; =2 CP' x (X — V()
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