
Math 6140 Notes. Spring 2003.

11. Codimension One Phenomena. A property of the points of a variety
X “holds in codimension one” if the locus of points for which the property
fails to hold is contained in a closed subset Z ⊂ X whose components all
have codimension 2 or more. We’ll see several examples of this:

• A normal variety X is non-singular in codimension 1 (Proposition 11.2).

• If X is normal then a rational map Φ : X − − > Pn is regular in
codimension 1 (on X) (Proposition 11.3).

• If Y is nonsingular and Φ : X → Y is a surjective birational regular
map and an isomorphism in codim 1, then Φ is an isomorphism (Prop 11.4)

Blowing up a point is a simple example of a surjective birational regular
map which is not an isomorphism. We’ll consider this in some detail.

Definition: If X is any variety and Z ⊂ X is a closed subvariety, then the
stalk of OX along Z is the ring:

OX,Z :=
⋃

{U |U∩Z 6=∅}
OX(U) ⊆ C(X)

Examples: (a) OX,X = C(X)

(b) If Z = x ∈ X, then OX,Z = OX,x the stalk from §9.

Properties: This stalk shares many of the properties from §9.

(i) If V ⊂ X is open and V ∩ Z 6= ∅, then OX,Z = OV,V ∩Z.

(ii) Each OX,Z is a local ring with maximal ideal:

mZ := {φ ∈ OX,Z | φ(Z) ≡ 0 (where defined)}
(iii) For each Φ : X → Y , let W = Φ(Z) ⊆ Y . Then there is a pull-back:

Φ∗ : OY,W → OX,Z with Φ∗mW ⊆ mZ

(iv) If X is affine, let I(Z) ⊂ C[X] be the prime ideal of Z. Then:

OX,Z = C[X]I(Z) ⊂ C(X)

Thus by the correspondence between prime ideals C[X]I(Z) and prime
ideals in C[X] contained in I(Z) (§7) there is an inclusion-reversing bijection:

{prime ideals P ⊂ OX,Z} ↔ {closed subvarieties W such that Z ⊆W ⊆ X}
and in particular 0↔ X and mZ ↔ Z.
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So if codX(Z) = 1, then mZ ⊂ OX,Z is the unique (non-zero) prime ideal!

As an example of rings with one non-zero prime ideal, consider:

Definition: If K is a field, a function ν : K∗ → Z is a discrete valuation if:

(i) ν(ab) = ν(a) + ν(b) and

(ii) ν(a+ b) ≥ min(ν(a), ν(b))

for all a, b ∈ K∗. If ν is not the trivial (zero) valuation, then:

Aν := {a ∈ K∗ | ν(a) ≥ 0} ∪ {0}

is the discrete valuation ring (or DVR) associated to the valuation ν.

Examples: (a) Fix a prime p. For a ∈ Z− {0}, define

ν(a) = the largest power of p dividing a

and ν(a
b
) = ν(a)−ν(b) for a

b
∈ Q∗. This is a discrete valuation and Aν = Z〈p〉

(b) Fix a complex number c ∈ C, and for non-zero φ ∈ C(x) set:

ν(φ) = the order of zero or pole (counted negatively) of φ at x

This is a discrete valuation and Aν = C[x]〈x−c〉

(c) Again, for non-zero rational functions φ = f
g
∈ C(x), let:

ν(φ) = deg(g)− deg(f)

This is a discrete valuation and Aν = C[x−1]〈x−1〉.

Observations: (a) If a valuation isn’t surjective, its image is dZ for some
d > 0, so we may as well divide through by d to get a surjective valuation.

(b) In a DVR Aν (with surjective valuation ν), the (non-zero!) ideal:

m := {a ∈ Aν | ν(a) > 0} ⊂ Aν

is principal, generated by any element π ∈ Aν satisfying ν(π) = 1. Such an
element is called a uniformizing parameter. Note that m = 〈π〉 is the unique
(non-zero) prime ideal since every ideal in Aν is one of:

mn = 〈πn〉 = {a ∈ A | ν(a) ≥ n}

for a uniquely determined n. Thus, in particular a DVR is always Noetherian
and is a UFD (the factorization is b = uπn for unit u and unique n).
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Proposition 11.1: Suppose A is a (local) Noetherian domain with a unique
non-zero prime ideal m ⊂ A. Then:

(a) For any f ∈ m, the ring Af is the field of fractions K = K(A).

(b) If I ⊂ A is any (non-zero) proper ideal, then
√
I = m.

(c) For each proper ideal I ⊂ A, there is a unique n > 0 such that:

mn ⊆ I but mn−1 6⊆ I

(d) If A is also integrally closed, then A is a DVR.

Proof: (a) Af is a domain, and its prime ideals correspond to the prime
ideals in A that do not contain f . Only the zero ideal has this property, so
Af has no non-zero primes, hence the zero ideal is maximal and Af = K.

(b) Suppose f ∈ m is arbitrary, and b ∈ A. Then b−1 = a
fn
∈ K by (a),

so ab = fn for some n. In other words, f ∈
√
〈b〉 for all f ∈ m and b ∈ A.

So m ⊆
√
I for all ideals I and then m =

√
I unless

√
I = I = A.

(c) It suffices to show that mn ⊆ I for some n. But this follows from (b).
That is, if 〈a1, ..., ak〉 = m =

√
I (A is Noetherian!), then there are n1, ..., nk

such that each anii ∈ I, and then we may let n = 1 +
∑

(ni − 1) to ensure
that mn ⊆ I.

(d) Assume A is integrally closed. We’ll first prove that m is principal.
Pick an a ∈ m, and find n from (c) so that mn ⊆ 〈a〉 but mn−1 6⊆ 〈a〉. Now
choose b ∈ mn−1 − 〈a〉 and consider φ = b

a
∈ K (the field of fractions of A).

By the choice of a and b, we know that φ 6∈ A. On the other hand, φm ⊆ A
since b ∈ mn−1 and mn ⊆ 〈a〉. But φm 6⊆ m, since if it were, we’d have:

A[φ] ↪→ m[φ] = m;
∑

αiφ
i 7→

∑
aαiφ

i

an inclusion of A-modules and since A is integrally closed, A[φ] is not finitely
generated, so this would violate Noetherianness of A. Thus there is a unit
u ∈ A and π ∈ m such that φπ = u. But now for any a ∈ m, we have
φa = a′ ∈ A, so a = a′φ−1 = (a′u−1)π. So m = 〈π〉.

Now let’s define the valuation. If a ∈ A, then either a is a unit or a ∈ m.
In the latter case, we can write a = πa1, and repeat the question of a1. This
gives an ascending chain of ideals:

〈a〉 ⊂ 〈a1〉 ⊂ 〈a2〉 ⊂ ...

that eventually stabilizes since A is Noetherian.
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But this can only happen if 〈an〉 = A (since π−1 6∈ A). Thus an is a unit,
and we can write:

a = πnan = uπn

and the value of n in this expression is evidently unique. Thus we may define:
ν(uπn) = n and extend to a valuation on K∗ with the desired A = Aν .

Proposition 11.2: A normal variety is non-singular in codimension 1.

Proof: Since the non-singular points of any variety are open (Prop 10.1)
it suffices to show that given a normal variety X, there is no codimension 1
closed subvariety Z ⊂ X such that Z ⊆ Sing(X).

For this, we may assume X is affine, so C[X] is integrally closed and then
for any closed subvariety Z ⊂ X:

OX,Z = C[X]I(Z) ⊂ C(X)

is also integrally closed (see Proposition 9.4). When Z has codimension 1,
this is a Noetherian ring with a unique prime, so by Proposition 11.1, the
ring OX,Z is a DVR. In that case, let π ∈ mZ be a uniformizing parameter.
Then π ∈ OX(U) for some U ∩ Z 6= ∅, and by shrinking U if necessary, we
obtain an open subset V ⊂ X such that:

• V = Uf ⊂ X is a basic open set (hence an affine variety)

• V ∩ Z 6= ∅
• I(V ∩ Z) = 〈π〉 ⊂ C[V ]

So let’s replace X by V and Z by Z ∩V . Here’s the main point. If z ∈ Z
and the images of f1, ..., fm ∈ C[X] under the map C[X]→ C[Z]→ OZ,z are
a basis for the Zariski cotangent space T ∗z Z = mz/m

2
z of Z at z, then because

I(Z) = 〈π〉 it follows that OZ,z = OX,z/π and so the images of f1, ..., fm, π
under C[X]→ OX,z also span the Zariski tangent space T ∗zX of X at z.

In other words, the dimensions of the Zariski tangent spaces satisfy:

dim(OX,z) ≤ dim(OZ,z) + 1

But if z ∈ Z is a non-singular point of Z, then dim(OZ,z) = dim(Z) and
then the inequality above is an equality since dim(X) = dim(Z) + 1 and
z ∈ X is also a non-singular point of X. Since there is a nonempty open set
of nonsingular points in Z, it follows that Z 6⊂ Sing(X), as desired.
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Proposition 11.3: If Φ : X −− > CPn is a rational map and X is normal,
then Φ is regular in codimension 1.

Proof: Recall that if X ⊂ CPm then in a neighborhood of of each point
p ∈ X in the domain of X we can write Φ = (F0 : .... : Fn) for some d and
Fi ∈ C[x0, ..., xm]d and conversely, so in particular, the domain of Φ is open.
Thus to prove Φ is regular in codimension 1, we only have to prove that Φ is
regular at some point p ∈ Z of each codimension 1 closed subvariety Z ⊂ X.

By Proposition 11.1 each OX,Z = C(X)ν for some valuation ν on C(X)∗.
Consider now the valuations of the ratios:

ν(
Fi
Fj

) ∈ C(X) for some expression Φ = (F0 : .... : Fn)

valid near some point of X. If we choose ν(
Fi0
Fj0

) minimal (certainly negative!),

then since they satisfy: ν(
Fi0
Fj0

) + ν( Fi
Fi0

) = ν( Fi
Fj0

) ≥ ν(
Fi0
Fj0

), each ν( Fi
Fi0

) ≥ 0.

Thus the components of the rational map:

Φ : X −− > Cn ∼= Ui0 ⊆ CPn; p 7→ (
F0

Fi0
, ...,

Fn
Fi0

)

are all in OX,Z , so for some open subset U ⊂ X with U ∩ Z 6= ∅, each
component belongs to U , and then Φ is regular all along U , as desired.

Example: Consider the map to the line through the origin:

π : C2 −− > CP1; (x, y) 7→ (x : y)

As we’ve seen, this cannot be extended to a regular map across (0, 0). But
if we restrict this to the (nonsingular) curve C = V (y2 − x(x− 1)(x− λ)):

π|C : C → CP1

becomes regular across (0, 0). That’s because (as in the Proposition):

x =
y2

(x− 1)(x− λ)

in a neighborhood of (0, 0), and then in that neighborhood:

π(x, y) = (
y2

(x− 1)(x− λ)
: y) = (

y

(x− 1)(x− λ)
: 1)

so π(0, 0) = (0 : 1) (the vertical tangent line!). Notice that we couldn’t do
this if λ = 0, but in that case C is singular at (0, 0).
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Remark: Putting Propositions 11.2 and 11.3 together in dimension 1 gives
a very striking result. Namely, if X ⊂ CPn is any quasi-projective variety
of dimension 1 (i.e. a curve), let C be the normalization of the closure of X.
Then C is a non-singular (Proposition 11.2) projective curve with:

C(C) ∼= C(X)

Moreover, if C ′ is any other non-singular projective curve with:

C(C ′) ∼= C(C)

then the associated birational map:

Φ : C −− > C ′

is an isomorphism(!) (by Proposition 11.3 applied to Φ and Φ−1). Thus up
to isomorphism, there is only one non-singular projective curve with a given
field of rational functions. Moreover, if: C(C) ⊂ C(C′′) is an inclusion of
such fields, then again by Proposition 11.3, the associated rational map:

Φ : C ′′ → C

is actually regular, so the field inclusions correspond to (finite) maps of the
non-singular projective “models” of the fields. We will study more properties
of non-singular projective curves later.

Proposition 11.4: If Φ : X → Y is a birational surjective regular map
and Y is non-singular, then if Φ is not an isomorphism, it is also not an
isomorphism in codimension 1.

Proof: If Φ is not an isomorphism, let q ∈ Y be a point where Φ−1

is not defined and let p ∈ Φ−1(q) (if Φ−1 were defined everywhere, then it
would be a regular inverse of Φ!). Consider affine neighborhoods q ∈ V and
p ∈ U ⊂ Φ−1(V ), and let U ⊂ Cn be a closed embedding. Then locally:

Φ−1 = (φ1, ..., φn) : V −− > U ⊂ Cn

and to say that Φ−1(q) is not defined is to say that some φ = φi 6∈ OY,q. But
we’ve proved that OY,q is a UFD in §10, so we can write φ = f

g
in lowest

terms, with f, g ∈ OY,q. When we pull back: Φ∗(φ) = xi ∈ C[U ] is the ith
coordinate function, so:

Φ∗(f) = xiΦ
∗(g) ∈ OX,p

and we can shrink V (and U) further so that f, g ∈ C[V ].
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Consider the hypersurface V (Φ∗(g)) ⊂ U . We know p ∈ V (Φ∗(g)) since
otherwise g(q) 6= 0 would give f

g
∈ OY,q. Each component Z ⊂ V (Φ∗(g))

(containing p) has codimension 1 in U by Krull’s Principal Ideal Theorem.
On the other hand, the image:

Φ(Z) ⊂ V (f) ∩ V (g)

must have codimension ≥ 2 in V . That’s because if we write:

g = ug1 · · · gn
as a product of irreducibles (and shrink V again so that each gi ∈ C[V ]) then
the V (gi) are the irreducible components of V (g) and f 6∈ (gi) = I(V (gi)) so
V (f) ∩ V (gi) 6= V (gi), and V (Z) is contained in one of these.

Finally, by the theorem on the dimension of the fibers of a regular map, we
see that since dim(Z) > dim(Φ(Z)), it follows that every z ∈ Z is contained
in a fiber of Φ of dimension ≥ 1, so Φ is not an isomorphism anywhere on Z.

We’ve actually shown that the set of points p ∈ X where Φ fails to be
an isomorphism is a union of codimension 1 subvarieties of X. This is called
the exceptional locus of the birational map Φ.

Moral Example: It’s time you saw the Cremona transformation:

Φ : CP2 −− > CP2; (x : y : z) 7→ (
1

x
:

1

y
:

1

x
) = (yz : xz : xy)

By Proposition 11.3, this is regular in codimension 1, and indeed it is:

domain(Φ) = CP2 − {(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0)}

Note that Φ2 = id, but the exceptional locus of Φ are V (x) ∪ V (y) ∪ V (z)
(this is only morally an example, since Φ isn’t regular and it isn’t surjective).

Main Example: If X is non-singular, then any rational map:

Φ : X −− > CPn

gives rise to a birational, surjective regular projection σ = π1 : ΓΦ → X from
the closure of the graph of Φ (in X ×CPn) to X. Evidently, σ restricts to
an isomorphism from ΓΦ to the domain of Φ, and the Proposition tells us
that the exceptional set of σ is a union of codimsion 1 subvarieties, which is
to say that the “boundary” ΓΦ−ΓΦ is a union of codimension 1 subvarieties
mapping to the “indeterminate locus” X − dom(Φ) of the rational map Φ.
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The simplest instance of this is:

The Blow up of a point in Cn: Consider the rational map:

Φ : Cn −− > CPn−1; Φ(p1, ..., pn) = (p1 : ... : pn)

In other words, Φ maps a point p ∈ Cn (other than the origin) to the point
in projective space corresponding to the line through p and the origin. Then:

bl0(Cn) := ΓΦ = ΓΦ ∪ ({0} ×CPn−1)

because σ−1(0) ⊆ ({0}×CPn−1) is required to have codimension 1 in bl0(Cn)
(which has dimension n). This exceptional variety “nicely” fits with ΓΦ:

Proposition 11.5: bl0(Cn) ⊂ Cn ×CPn−1 is:

(a) non-singular and

(b) given by explicit equations (which we give in the proof).

(σ is sometimes called a blow-down, σ-process or monoidal transformation)

Proof: Consider the ring C[x1, ..., xn, y1, ..., yn] graded by degree in y,
as in the proof of Proposition 6.7. We’ve seen that the closed subsets of
Cn ×CPn−1 are all of the form V (I) for homogeneous ideals I. Then:

bl0(Cn) = V := V (〈xiyj − xjyi〉)

since this contains ΓΦ (and no other points over 0 6= p ∈ Cn) and is closed
and irreducible. Note that V does contain 0×CPn−1, as we proved it must(!)
We see that V is irreducible and nonsingular by covering it with open affine
subsets. Namely, let Ui = Cn × (CPn−1 − V (yi)). Then:

C[Ui]/I(V ∩ Ui) ∼= C[x1, ..., xn,
y1

yi
, ...,

yn
yi

]/〈xi(
yj
yi

)− xj , ..., xk(
yj
yi

)− xj(
yk
yi

)〉

but all relations follow from the first ones, solving xj = xi
yj
yi

so this ring is a
domain, V ∩ Ui ⊂ Ui is closed and irreducible, and:

C[Ui]/I(V ∩ Ui) = C[V ∩ Ui] ∼= C[xi,
y1

yi
, ...,

yn
yi

]

so that bl0(Cn) ∩ Ui = V ∩ Ui ∼= Cn is, in particular, nonsingular!

Remark: bl0(Cn) defined above is not an affine variety, since there is a
closed embedding CPn−1 ↪→ bl0(Cn). It is quasi-projective, of course, as it
sits inside Cn ×CPn−1 as a (non-singular) closed subvariety.
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First Generalization: Blowing up a point in CPn. Consider

π : CPn −− > CPn−1

the projection from a point p ∈ CPn. With suitable basis, we can assume
p = 0 ∈ Cn ⊂ CPn. It follows that:

blp(CPn) := Γπ ⊂ CPn ×CPn−1

is a non-singular projective variety, with open (not affine!) cover given by:

blp(CPn) = bl0(Cn) ∪ (CPn − p)

and these open sets patch by the projection σ : Γπ
∼→ CPn − p.

That was the easy generalization. Next:

Proposition 11.6: If X ⊂ CPn is an embedded variety (maybe singular)
of dimension m and p ∈ X is a (maybe singular) point, then the variety:

blp(X) := Γπ|X = Γπ|X ∪ PCpX ⊂ blp(CPn)

where PCpX ⊂ {p} ×CPn−1 is the “projectivized tangent cone” of X at p.
If p is nonsingular then PCp(X) ⊂ CPn−1 is naturally identified with the
projective tangent space to X at p, and blp(X) is nonsingular along PCp(X).

Proof: Let Y = X ∩Cn for p = 0 ∈ Cn ⊂ CPn as above. It follows from
Proposition 11.5 that the blow-up of Y at p is the unique component:

blp(Y ) ⊂ V (〈xiyj − xjyi, f(x1, ..., xn)) | f ∈ I(Y )〉)

containing the graph of π|Y : Y −− > CPn−1. This is covered by:

blp(Y ) ∩ Ui ⊂ V (〈f(xi
y1

yi
, ..., xi

yn
yi

)〉) ⊂ Cn = blp(C
n) ∩ Ui

Expand f as a sum of homogeneous polynomials f = fd0 + fd0+1 + ...fd.
with fd0 6= 0. Since 0 ∈ Y we have d0 ≥ 1 and then:

f(xi
y1

yi
, ..., xi

yn
yi

) = xd0
i (fd0(

y1

yi
, ...,

yn
yi

) + xifd0(
y1

yi
, ...,

yn
yi

) + ...)

gives:

V (〈f(xi
y1

yi
, ..., xi

xn
xi

)〉) = V (xi) ∪ V (〈
f(xi

y1

yi
, ..., xi

yn
yi

)

xd0
i

〉)
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Consider the inclusion of polynomial rings (with zj =
yj
yi

for convenience):

A = C[xiz1, ..., xizi−1, xi, xizi+1, ..., xizn] ⊂ C[z1, ..., zi−1, xi, zi+1, ..., zn] = B

The ideal P = {f(xiz1, ..., xizn) | f ∈ I(Y )} ⊂ A is prime by assumption,
and the ideal Q = 〈 1

x
d0
i

f(xiz1, ..., xizn) | f ∈ I(Y )〉 ⊂ B is equal to Pxi ∩ B
for the natural inclusion B ⊂ Axi. So it is prime, too.

Since V (xi) = π−1
1 (0) ⊂ Cn ×CPn−1 and V (Q) is irreducible, we get:

blp(Y )∩Ui = V (Q) and σ−1(0)∩Ui = V (Q)∩ V (xi) = V (〈fd0(
y1

yi
, ...,

yn
yi

)〉)

Thus σ−1(0) = V (〈fd0(y1, ..., yn)〉) =: PCpX ⊂ CPn−1 is the projectivized
tangent cone to Y (or X) at p. To repeat, the fd0(x1, ..., xn) are the leading
terms in the Taylor polynomials at p of the equations of Y ⊂ Cn.

For the last part, notice that if F ∈ I(X) and f = F (1, x1, ..., xn) ∈ I(Y )
then

f1 =
n∑
i=1

∂f

∂xi
(p)xi =

n∑
i=1

∂F

∂xi
(p)xi (up to a scalar)

But

V (
n∑
i=0

∂F

∂xi
(p)xi) = π(V (

n∑
i=0

∂F

∂xi
(p)xi))

from which it follows that PCp(X) ⊆ π(Θp) (see Exercise 10.5). But if p is
a nonsingular point, then π(Θp)) ∼= CPm−1 so PCp(X) = π(Θp) since they
have the same dimension! Finally, if p is non-singular, then:

〈xi〉 = 〈x1, ..., xn, f1(
y1

yi
, ...,

yn
yi

) | f ∈ I(Y )〉 = I(PCp(X) ∩ Ui)

so the ideal of the non-singular subvariety PCp(X) ∩ Ui ⊂ blp(Y ) ∩ Ui is
generated by xi, and then as in the proof of Proposition 11.1, it follows that
blp(Y ) is non-singular along PCp(X).

Examples: (a) If Y = V (y2 − x2 + x3) ⊂ C2 is the nodal cubic, then:

bl0(Y ) = V (y − xy2

y1

,

(
y2

y1

)2

− 1 + x) ∪ V (x− yy1

y2

, 1−
(
y1

y2

)2

+ y

(
y1

y2

)3

)

is non-singular (the first open set is a parabola!), and:

PCp(Y ) = V (y2 − x2) = (0 : 1) ∪ (1 : 0) ⊂ CP1 consists of two points
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(b) If Y = V (y2 − x5), then:

bl0(Y ) = V (y − xy2

y1

,

(
y2

y1

)2

− x3) ∪ V (x− y y1

y2

, 1− y3

(
y1

y2

)5

)

and this is singular at the exceptional locus:

PCp(Y ) = V (y2) = (1 : 0) ∈ CP1

Notice that PCp(Y ) is a single point (evidently nonsingular) but bl0(Y ) is
singular at this point. This is no contradiction since the ideal of the point is
not given by a single equation!

Final Remark: We can view the blow-up blp(X) as a surgery, removing the
point p ∈ X and replacing it with the codimension 1 projectivized tangent
cone PCp(X) ⊂ blp(X). We can ask whether blowing up X along an isolated
singular point p ∈ X “improves” X, in the sense that blp(X) is less singular
than X was. The situation is somewhat complicated in dimension ≥ 3, but in
dimension 2, the answer is yes. That is, if we start with an arbitrary projec-
tive surface X and normalize, then by Proposition 11.2, the resulting normal
surface S has only finitely many (isolated) singularities, and then blowing up
these singularities (and any singularities that occur in the exceptional loci)
will eventually produce a non-singular projective surface Sn:

Sn = blpn(Sn−1)→ Sn−1 = blpn−1(Sn−2)→ S1 = · · · blp1(S)→ S

Similarly, if Φ : S−− > S′ is a rational map of normal projective surfaces,
then by Proposition 11.3, the indeterminacy locus of Φ is a finite set of points,
and it is also true that after finitely many blow-ups, we obtain a regular map:

Sn = blpn(Sn−1)
↓
...
↓ ↘

S1 = blp1
(S)

↓
Φ : S −− > S ′

Thus with the assistance of blow-ups at points, the situation is somewhat
similar (but more complicated) than the situation for curves.
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Exercises 11.

1. If X is a normal variety, let:

Div(X) =
⊕

cod 1 irred V⊂X
Z[Z]

i.e. Div(X) is the free abelian group generated by the codimension 1 closed
subvarieties of X. Prove that there is a well-defined homomorphism:

div : C(X)∗ → Div(X); div(φ) =
∑
V

νZ(φ)

where νZ is the discrete valuation defining OX,Z . Identify the kernel of div
and prove that if X is an affine variety, then:

C[X] is a UFD ⇔ div is surjective

(the quotient Div(X)/div(C(X)∗) is called the “class group” of X).

2. Consider the projection from p = (1 : 0 : 0 : 0):

π : CP1 ×CP1 = V (xw − yz)−− > CP2; (a : b : c : d) 7→ (b : c : d)

Prove that blp(CP1 ×CP1) is isomorphic to the “compound” blowup:

X := blσ−1(0:1:0)(bl(1:0:0)(CP2))

(this is the blow-up of CP2 at the two points (0 : 1 : 0) and (1 : 0 : 0)).

3. If X = C(V ) ⊂ PCn is the projective cone over V ⊂ CPn−1, show that

PCp(X) = V

where p = 0 ∈ Cn ⊂ CPn is the vertex of the cone and show that:

π2 : blp(X)→ CPn−1

has fibers isomorphic to CP1. In fact, find isomorphisms:

blp(X) ∩ Ui ∼= CP1 × (X − V (xi))
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