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Lecture 6. Continuous functions are defined in a Calculus class in terms of lim-
its. Continuity is abstractly defined in the category of topological spaces, which
includes Euclidean spaces and all metric spaces, as well as topological spaces with
no metric. Continuity is the key to paring down the multitude of representations of
the circle (an infinite abelian group) to the set of characters given by the complex
exponentials. From this point of view a Fourier series is the expansion of a (class)
function in terms of characters.

Definition 6.1. (a) A topological space is a set X equipped with a collection of
open subsets U ⊂ X with the following properties:

(i) ∅ and X are open subsets of X.

(ii) The intersection of two open sets is an open set.

(ii) The union of arbitrarily many open sets is an open set.

The complement of an open set is a closed set.

(b) If a collection {Uλ | λ ∈ Λ} of subsets of X satisfies:

(i) The union ∪λ∈ΛUλ = X and

(ii) For each µ, ν ∈ Λ, the intersection Uµ ∩ Uν is a union of sets Uλ.

then the Uλ are a basis for a topology whose open sets are the unions:

U = ∪λ∈SUλ over all subsets of the indexing set Λ

Remark. Every topology has basis, namely the collection of all open sets U ⊂ X.
The point about a basis is to determine a topology using far fewer of the open sets.
Two bases are equivalent of they generate the same topology on X.

Example. (i) If (X, d) is a metric space, then the open balls:

Bp,r = {q ∈ X | d(p, q) < r}
indexed by p ∈ X and r > 0 are a basis for the metric space topology on X.
Property (ii) is a consequence of the triangle inequality!

(ii) The Euclidean topology on Rn is the topology associated to the Euclidean
metric. There is a countable basis of open sets for this topology given by the balls
Bp,r such that p = (p1, ..., pn) has rational coordinates and r ∈ Q.

Definition 6.2. A mapping f : X → Y of topological spaces is continuous if the
inverse image f−1(U) of every open set U ⊂ Y is open in X, or equivalently if the
inverse image of every closed set is closed.

Notice that continuity can be checked on any basis for the topology on Y , since

f−1(∪Uλ) = ∪f−1(Uλ)

Notice also that if f : X → Y and g : Y → Z are continuous, then:

(g ◦ f)−1(U) = f−1(g−1(U)) is open in X for all open sets U ⊂ Z
and therefore g ◦ f is continuous.

Example. (i) In the discrete topology on X, all subsets are open (and closed!).

(ii) In the trivial topology on X, only ∅ and X are open (and closed) sets.
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These topologies are as far apart as it is possible to be. The identity map idX
is continuous as a map from the discrete topology to the trivial topology, but not
the other way around (unless X is a single point).

The category Top of topological spaces is defined by:

• The objects X of Top are topological spaces.

• The morphisms f : X → Y in Top are continuous maps.

• The isomorphisms are bijective continuous maps with continuous inverses.
These are called homeomorphisms. Note that in the example above, the identity
map from the discrete topology on X to the trivial topology on X is continuous,
but the inverse map (which is again idX) is not continuous, so in this case idX is
not a homeomorphism. This may bex confusing because notation is being abused.
The identity maps in the category Top are the identity from X to itself with the
same topology. In that case, of course idX is a homeomorphism.

Proposition 6.3. If Uλ ⊂ X and Vλ′ ⊂ Y are bases for topologies, then

Uλ × Vλ′ ⊂ X × Y
is a basis for the product topology, making X × Y (with Cartesian projections) the
product of X and Y in the category of topological spaces. In the case of Rn, the
product topology (as an n-fold product Rn = R1×· · ·R1) is the Euclidean topology.

Proof. If Uµ ∩ Uν is a union of basis sets Uλ, and Vµ′ ∩ Vν′ is a union of Vλ′ ,
then (Uµ × Vµ′) ∩ (Uν × Vν′) is a union of product sets Uλ × Vλ′ . The projection

maps πX : X × Y → X and πY : X × Y → Y are continuous since π−1
X (Uλ) =

Uλ ×X = ∪λ′Uλ × Vλ′ and similarly πY is continuous. Moreover, if Z is another
topological space and f : Z → X and g : Z → Y are continuous, then

(f, g)−1(Uλ × Vλ′) = f−1(Uλ) ∩ g−1(Vλ′) is open

and it follows that the unique lifted map (f, g) : Z → X × Y is continuous. So the
product topology indeed defines a product in the category Top.

The product and Euclidean topologies on Rnare the same because:

(i) Every Euclidean ball is a union of products of open intervals, and

(ii) Every product of open intervals is a union of Euclidean balls.

This is left as an exercise. �

Arithmetic Examples. The addition and multiplication maps:

+ : R1 × R1 → R1 and ∗ : R1 × R1 → R1

are continuous. Indeed, the inverse image of an interval (a, b) under the addition
map is the region: {(x, y) | a < x+y < b} which is an open set bounded between two
parallel lines. Similarly, the inverse image of an interval (a, b) under multiplication
is an open set bounded between closed plane curves (hyperbolas or the axes).

From this it follows that if f, g : X → R are continuous real valued functions
on a topological space, then f + g and fg are continuous functions. Moreover, if
f, g : X → Rn, then again f + g is continuous, and if f, g : X → C, then fg is
continuous as well.

Some important additional features of topological spaces include:
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Definition 6.4. (a) A topological space X is disconnected if:

X = U1 ∪ U2 for a pair of non-empty disjoint open subsets

If there is no such pair of open sets, then X is connected.

(b) A topological spaceX is Hausdorff if for all p, q ∈ X, there are neighborhoods

p ∈ U1 and q ∈ U2 with U1 ∩ U2 = ∅
i.e. p and q are separated by disjoint open sets.

(c) A topological space X is compact if it is Hausdorff and every open cover

X = ∪λ∈SUλ has a finite subcover X = Uλ1
∪ · · · ∪ Uλn

Examples. (a) R is connected. Every open subset of R is a disjoint union of open
invervals (aλ, bλ) and if U ⊂ R is open and not equal to R, then there is a point aλ
or bλ on the boundary of one of these intervals that is not in U . Every open set
containing that point intersects the interval (aλ, bλ), and so cannot disconnect R
together with U . Note. The closed subsets of R are not all disjoint unions of closed
intervals, and are somehow more interesting than the open sets (e.g. Cantor sets).

(b) Metric space topologies are Hausdorff. The trivial topology is not Hausdorff.
The discrete topology is Hausdorff with a vengeance!

(c) R is not compact. The union R = ∪∞n=1(−n, n) has no finite subcover.

The following Proposition is left as an exercise.

Proposition 6.5. Let X and Y be topological spacexs.

(a) If X and Y are connected, then X × Y is connected.

(b) If X and Y are Hausdorff, then X × Y is Hausdorff.

(c) If X and Y are compact, then X × Y is compact.

Definition 6.6. If X is a topological space and Y ⊂ X, then the collection of
subsets U ∩ Y ⊂ Y comprises the induced topology on X.

When we discuss whether a subset Y ⊂ X of a topological space is connected
or compact, it is with respect to the induced topology. Note that every subset of
a Hausdorff topological space is Hausdorff, but a subset of a connected space need
not be connected (e.g. R − {0} ⊂ R is disconnected) and a subset of a compact
space need not be compact. One way to see examples of this is via the:

Heine-Borel Theorem. Y ⊂ Rn is compact if and only if it is closed and bounded.
Thus, for example, the unit circle:

S1 = {(x, y) | x2 + y2 = 1}
is clearly bounded and closed since: S1 = h−1(1) for the continuous map h(x, y) =
x2 + y2, so by the Theorem, S1 is compact. On the other hand if we remove the
north pole n = (0, 1), then S1−n is bounded but not closed. In fact the two maps:

f : S1 − n→ R defined by f(x, y) =
x

1− y
and

g : R→ S1 − n defined by g(t) =

(
2t

1 + t2
,

1− t2

1 + t2

)
are continuous inverse mappings, hence isomorphisms (homeomorphisms) in Top.
So (S1 − n) ∼= R is not compact.
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Here are some other examples:

Examples. The special linear group

SL(2,R) =

{
A =

[
a b
c d

]
|det(A) = 1

}
⊂ R4

is closed, since SL(n,R) = det−1(1) for the continuous map det(A) = ad− bc, but
it is not bounded. For example, the “one-parameter subgroup”{[

t 0
0 t−1

]
| t ∈ R∗

}
⊂ SL(2,R)

cannot be contained in any ball of finite radius. (This generalizes to SL(n,R))

The orthogonal group

O(n,R) =
{
A | AAT = In

}
is both closed and bounded. It is closed because it is the inverse image:

f−1(In) for the continuous map f(A) = AAT

It is bounded because the columns (or rows) of A consist of n vectors of length 1.
Thus O(n,R) is contained in the bounded subset:

Sn−1 × · · · × Sn−1 ⊂ Rn × · · · × Rn

Interestingly, O(n,R) is not connected. It consists of two components:

SO(n,R) = O(n,R) ∩ SL(n,R) and O(n,R)− = O(n,R) ∩ det−1(−1)

that are homeomorphic via multiplication by any A ∈ O(n,R)−.

Similarly, the unitary groups U(n) are compact, but these are also connected.

Proposition 6.7. Suppose f : X → Y is a continuous map.

(a) If Z ⊂ X is connected, then f(Z) ⊂ Y is connected.

(b) If Z ⊂ X is compact and Y is Hausdorff, then f(Z) is compact.

The proof of this, too, is left as an exercise.

Definition 6.8. A topological group is a group G that is also a topological
space, such that the group operations of multiplication and inverse:

m : G×G→ G and i : G→ G

are both continuous (and i is a homeomorphism since i ◦ i = idG).

Example. (a) Since addition is continuous and i(x) = −x is continuous, (R,+, 0)
is an abelian topological group, as are (R∗, ·, 1) and (Rn,+, 0), (C∗, ·, 1). Note that
(C∗, ·, 1) is connected, but (R∗, ·, 1) is disconnected.

(b) The circle (S1 = R/2πR,+, 0) is an abelian topological group.

(c) The groups SL(n,R), SL(n,C), O(n,R), U(n) are all topological groups. In
particular, S1 is isomorphic to U(1) as topological groups via the map:

eit : S1 → U(1)

This is, indeed, a complex representation of the group S1.

Example (a) gives an interesting proof of the following “obvious” fact:

Observation. R2 and R are not homeomorphic topological spaces.
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One nice way to see that C∗ is connected is via the exponential map

exp : C→ C∗; exp(z) = e2πiz

This is surjective, so C∗ is connected because C is connected. Since removing one
point disconnects R but doesn’t disconnect R2, it follows that R and R2 cannot be
homeomorphic. This generalizes via the use of homology to show that Rn and Rm
are not homeomorphic when n 6= m, via a “topological invariant” that distinguishes
the topological spaces Rm − 0 and Rn − 0.

Representation Theory of S1. Since S1 is abelian, all complex representations
are characters:

χ : S1 → C∗

and if we forget the topology, then there are a lot of characters! For example,

f(t) =

{
eit if t is a rational multiple of 2π
1 if t is an irrational multiple of 2π

is a (totally discontinuous) character!

Since the conjugacy classes of an abelian group are singletons, a class function
for the circle is just an arbitrary function:

f : S1 → C
These are evidently unwieldy, so we use the topology of S1 to streamline things:

Definition 6.8. A continuous character χ of a topological group G is the trace of
a continuous complex representation:

ρ : G→ Aut(V ) ∼= GL(n,C) ⊂ Cn
2

Such a character χ defines a class function on the set of conjugacy classes of G that
is a continuous function χ : G→ C that is constant on conjugacy classes.

Proposition 6.9. The continuous representations of S1 are the one-dimensional
characters χ(t) = eint for n ∈ Z (including the trivial character (n = 0)).

Proof. Under construction.


