Categories, Symmetry and Manifolds

Math 4800, Fall 2020
6. Representations. We discuss the category of representations of a group G.

Definition 6.1. A representation is an action of a group G on a vector space. In other words a representation is a homomorphism

$$
\rho: G \rightarrow \operatorname{Aut}(V) \text { to the group of symmetries of } V \text { in the category } \mathfrak{V e c} c_{F}
$$

That is, each $\rho(g): V \rightarrow V$ is a symmetry of the vector space V satisfying:

$$
\rho\left(g_{1} g_{2}\right)(v)=\rho\left(g_{1}\right) \circ \rho\left(g_{2}\right)(v) \text { and } \rho\left(1_{G}\right)=1_{V} \text { is the identity symmetry }
$$

When $V=F^{n}$, these symmetries are expressed as $n \times n$ matrices.
Example 1. A representation of $G=\{ \pm 1\}$ consists of $\rho(1)=\operatorname{id}_{V}$ and $\rho(-1)=\sigma$ where $\sigma \in \operatorname{Aut}(V)$ is any symmetry such that $\sigma \circ \sigma=\mathrm{id}_{V}$. For example
(a) $\rho(1)=I_{2}$ and $\rho(-1)=I_{2}$ is a "trivial" representation of G on \mathbb{R}^{2}.
(b) $\rho(1)=I_{2}$ and $\rho(-1)=-I_{2}$ is also a representation of G on \mathbb{R}^{2}, as well as
(c) $\rho(1)=I_{2}$ and any reflection across a line through the origin:

$$
\rho(-1)=\left[\begin{array}{rr}
\cos (\theta) & \sin (\theta) \\
\sin (\theta) & -\cos (\theta)
\end{array}\right]
$$

Remarks. (i) Instead of writing $\rho(g)(v)$, one writes $g v$ when ρ is understood.
(ii) As in the example above, when a group G is given in terms of generators and relations, then a representation ρ is specified by choosing symmetries $\rho(g)$ for each generator so that the group relations hold among the chosen symmetries.

Example 2. Transpositions $g_{1}=\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $g_{2}=\left(\begin{array}{ll}2 & 3\end{array}\right)$ generate S_{3} with relations:

$$
g_{1}^{2}=\mathrm{id}, g_{2}^{2}=\mathrm{id} \text { and }\left(g_{1} g_{2}\right)^{3}=\mathrm{id}
$$

Letting

$$
\rho\left(g_{1}\right)=\left[\begin{array}{rr}
-1 & 1 \\
0 & 1
\end{array}\right] \text { and } \rho\left(g_{2}\right)=\left[\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right]
$$

we check that:

$$
\left[\begin{array}{rr}
-1 & 1 \\
0 & 1
\end{array}\right]^{2}=I_{2}=\left[\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right]^{2}
$$

and

$$
\left[\begin{array}{rr}
-1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right] \text { satisfies }\left[\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right]^{3}=I_{2}
$$

so this determines a two-dimensional representation of S_{3}. For example,

$$
\begin{aligned}
& \rho\left(\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\right)=\rho\left(\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right)=\left[\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right] \text { and } \\
& \rho\left(\left(\begin{array}{ll}
1 & 3
\end{array}\right)\right)=\rho\left(\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right)\right)=\left[\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right] \cdot\left[\begin{array}{rr}
-1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right]
\end{aligned}
$$

Example 3. A pair of one-dimensional representations of S_{n} :
(a) The trivial representation $\rho_{t r}(\sigma)=1$ for all $\sigma \in S_{n}$ and
(b) The sign representation $\rho_{\operatorname{sgn}}(\sigma)=\operatorname{sgn}(\sigma)$ for all $\sigma \in S_{n}$.

Definition 6.2. Given representations of G on vector spaces V and W, then

$$
f: V \rightarrow W \in \operatorname{hom}(V, W)
$$

is G-linear if $f(g v)=g f(v)$ for all $g \in G$ and $v \in V$.
This determines the category $\mathfrak{G} R e p_{F}$ of G-representations with fixed scalar field F :

- The objects of $\mathfrak{G} R e p_{F}$ are G-representations on vector spaces over F.
- The morphisms of $\mathfrak{G} R e p_{F}$ are G-linear maps of vector spaces over F..

Definition 6.3. Given a representation ρ of G on V,
(i) A subspace $U \subset V$ is invariant if $g u \in u$ for all $u \in U$.
(ii) ρ is irreducible if the only invariant subspaces of V are $\{0\}$ and V.

The Basic Problem. To classify the irreducible representations of a group G.
Examples. (a) In Examples (1a) and (1b), every subspace $U \subset \mathbb{R}^{2}$ is invariant.
(b) In Example (1c), there are two invariant subspaces: the line $y=\tan (\theta) x$ of vectors with eigenvalue 1 and the perpendicular line $y=-\cot (\theta) x$ of vectors with eigenvalue -1 for the given reflection matrix.
(c) The permutation representation of S_{n} on F^{n} given by:

$$
\rho_{p e r}(\sigma)\left(e_{i}\right)=e_{\sigma(i)}
$$

has invariant one-dimensional and n-1-dimensional subspaces:

$$
\begin{gathered}
U_{1}=\left\langle e_{1}+\cdots+e_{n}\right\rangle \text { and } \\
U_{n-1}=\left\langle e_{1}-e_{2}, \ldots, e_{n-1}-e_{n}\right\rangle
\end{gathered}
$$

The former is clearly invariant, and latter is invariant because of "telescoping":

$$
\rho_{p e r}(\sigma)\left(e_{i}-e_{i+1}\right)=e_{\sigma(i)}-e_{\sigma(i+1)}
$$

and each $e_{j}-e_{k}=\left(e_{j}-e_{j+1}\right)+\left(e_{j+1}-e_{j+2}\right)+\cdots+\left(e_{k-1}-e_{k}\right) \in U_{n+1}$.
Remark. An invariant subspace $U \subset V$ is itself a representation of G. Thus, for example, the two invariant lines for the reflection in Example (1c) are the representations: $\rho_{t r}$ and $\rho_{\text {sgn }}$, respective, of the group $C_{2}=S_{2}$ (from Example 3). One can check that Example 2 is the representation $U_{2} \subset F^{3}$ for the group S_{3}.
Definition 6.4. A character of G is a one-dimensional complex representation:

$$
\chi: G \rightarrow \mathbb{C}^{*}=\operatorname{Aut}\left(\mathbb{C}^{1}\right)
$$

Examples include the representations $\rho_{t r}$ and $\rho_{s g n}$ of S_{n} and the n characters:

$$
\chi_{m}: C_{n} \rightarrow \mathbb{C}^{*} ; \chi_{m}(x)=\zeta^{m} \text { for } \zeta=e^{\frac{2 \pi i}{n}}
$$

(including the trivial character χ_{0}) of the cyclic group $C_{n}=\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$.
Note. Characters, being one-dimensional, are irreducible complex representations.
The real two-dimensional rotations of C_{n} corresponding to χ_{m} are:

$$
\rho_{m}(x)=\left[\begin{array}{rr}
\cos (2 \pi m / n) & -\sin (2 \pi m / n) \\
\sin (2 \pi m / n) & \cos (2 \pi m / n)
\end{array}\right]
$$

and these are irreducible real representations, since they have no invariant lines.
In contrast, we have the following feature of complex representations:

Proposition 6.5. If G is an abelian group, then every irreducible complex representation of G is one-dimensional, i.e. a character.

Proof. Let $\rho: G \rightarrow \operatorname{Aut}\left(\mathbb{C}^{n}\right)$. We show that the commuting matrices:

$$
\rho(g)=A_{g} \text { for } g \in G
$$

all share a common eigenvector. The line spanned by one such eigenvector is then an invariant subspace for the representation ρ (and a character of the group A).

Select $g \in G$ and let $v \in \mathbb{C}^{n}$ be an eigenvector of A_{g} with eigenvalue $\lambda \in \mathbb{C}$. Select another $h \in G$. Then because A_{g} and A_{h} commute, we have:

$$
A_{g}\left(A_{h} v\right)=A_{h}\left(A_{g} v\right)=A_{h}(\lambda \cdot v)=\lambda A_{h}(v)
$$

so $A_{h} v$ is another eigenvector for A_{g} with eigenvalue λ. View:

$$
A_{h}: V_{\lambda} \rightarrow V_{\lambda} \text { as a symmetry of the } \lambda \text {-eigenspace of } A_{g}
$$

Then A_{h} has an eigenvector in V_{λ} with eigenvalue μ which is a shared eigenvector. Continue this process to conclude that any finite number of commuting matrices share an eigenvector. But this also applies to an infinite number of commuting matrices, reasoning by induction on the dimension of the shared eigenspaces.
Example. (a) Consider the "cycle" representation of C_{n} on \mathbb{C}^{n} given by:

$$
\rho_{c y c}(x)\left(e_{i}\right)=e_{i+1} \text { for } i<n \text { and } \rho_{c y c}\left(e_{n}\right)=e_{1}
$$

Then:

$$
A_{x}=\left[\begin{array}{lllll}
0 & 0 & \cdots & 0 & 1 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
& & \ddots & & \\
0 & 0 & \cdots & 1 & 0
\end{array}\right]
$$

has a basis v_{1}, \ldots, v_{n} of eigenvectors (hence invariant lines for C_{n}) given by:

$$
v_{m}=e_{1}+\zeta^{m} e_{2}+\zeta^{2 m} e_{3}+\cdots+\zeta^{(n-1) m} e_{n}\left(\text { with eigenvalue } \zeta^{m}\right)
$$

and, in particular, $v_{n}=e_{1}+\cdots+e_{n}$. Notice that each of the invariant lines:

$$
\left(\left\langle v_{m}\right\rangle, \rho_{c y c}\right) \text { is a copy of the character } \chi_{m} \text { defined above! }
$$

(b) Consider the representation of $(\mathbb{C},+, 0)$ on \mathbb{C}^{2} given by:

$$
\rho(z)=\left[\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right]
$$

This has one invariant subspace, the line spanned by the joint eigenvector e_{1}. Notice that when $z \neq 0$ in this example, the matrices are not semi-simple.
Definition 6.6. (i) A vector space V is a direct sum:

$$
V=U_{1} \oplus \cdots \oplus U_{n}
$$

of subspaces $U_{i} \subset V$ if every vector $v \in V$ has a unique expression:

$$
v=u_{1}+\cdots+u_{n} \text { for vectors } u_{i} \in U_{i}
$$

(ii) A representation (V, ρ) is a direct sum

$$
V=U_{1} \oplus \cdots \oplus U_{n}
$$

of sub-representations if the U_{i} are invariant subspaces of V.

Any subspace U of a vector space V has many "complementary" subspaces W with $V=U \oplus W$. Indeed, any basis $\left\{u_{1}, \ldots, u_{m}\right\}$ for U can be extended to a basis $\left\{u_{1}, \ldots, u_{m}, v_{m+1}, \ldots, v_{n}\right\}$ for V, and then we may choose $W=\left\langle v_{m+1}, \ldots, v_{n}\right\rangle$. When $V=\mathbb{R}^{n}$ or \mathbb{C}^{n}, however, the dot (or standard Hermitian) inner product gives a canonical orthogonal complement to U :

$$
\begin{gathered}
\mathbb{R}^{n}: U^{\perp}=\{v \in V \mid u \cdot v=0 \text { for all } u \in U\} \\
\mathbb{C}^{n}: U^{\perp}=\{v \in V \mid\langle u, v\rangle=0 \text { for all } u \in U\}
\end{gathered}
$$

Complements are much rarer for invariant subspaces U of a G-representation. For example, in the representation of $(\mathbb{C},+, 0)$:

$$
\rho(z)=\left[\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right]
$$

there is only one invariant line $U=\left\langle e_{1}\right\rangle$ which has no invariant complement.
Proposition 6.7. If G is finite and $\rho: G \rightarrow \operatorname{Aut}\left(\mathbb{C}^{n}\right)$ is a complex representation, every invariant subspace $U \subset \mathbb{C}^{n}$ has an invariant complement.

Proof. The idea is to construct a Hermitian inner product on \mathbb{C}^{n} that is G invariant by averaging over the group, and then to take the orthogonal complement with respect to this averaged inner product. Let:

$$
\langle u, v\rangle_{G}=\frac{1}{|G|} \sum_{g \in G}\langle g u, g v\rangle
$$

This is rigged so that:

$$
\langle u, v\rangle_{G}=\langle h u, h v\rangle_{G} \text { for all } h \in G
$$

and if $v \neq 0$, then

$$
\langle v, v\rangle_{G}=\frac{1}{|G|} \sum_{g \in G}|g v|^{2}>0
$$

i.e. $\langle *, *\rangle_{G}$ is positive definite, and also Hermitian, i.e.

$$
\langle u, v\rangle_{G}=\overline{\langle v, u\rangle}_{G} \text { and }\left\langle c_{1} u_{1}+c_{2} u_{2}, v\right\rangle_{G}=c_{1}\left\langle u_{1}, v\right\rangle_{G}+c_{2}\left\langle u_{2}, v\right\rangle_{G}
$$

It follows that if U is an invariant subspace of \mathbb{C}^{n}, then U^{\perp} is complementary, when U^{\perp} is defined in terms of this G-invariant Hermitian inner product, and

$$
\langle u, w\rangle_{G}=0 \text { for all } u \in U \Rightarrow\langle u, h w\rangle_{G}=\left\langle h^{-1} u, w\right\rangle_{G}=0 \text { for all } u \in U
$$

so U^{\perp} is also invariant.
Example. Consider the action of $G=\{ \pm 1\}$ on \mathbb{C}^{2} with:

$$
\rho(1)=I_{2} \text { and } \rho(-1)=\left[\begin{array}{rr}
-1 & 1 \\
0 & 1
\end{array}\right]
$$

Then $U_{1}=\left\langle e_{1}\right\rangle$ is an invariant subspace, and from:

$$
\begin{aligned}
& \left\langle e_{1}, e_{1}\right\rangle_{G}=\frac{1}{2}\left(\left\langle e_{1}, e_{1}\right\rangle+\left\langle-e_{1},-e_{1}\right\rangle\right)=1 \text { and } \\
& \left\langle e_{1}, e_{2}\right\rangle_{G}=\frac{1}{2}\left(\left\langle e_{1}, e_{2}\right\rangle+\left\langle-e_{1}, e_{1}+e_{2}\right\rangle\right)=-\frac{1}{2}
\end{aligned}
$$

we conclude that:

$$
\left\langle e_{1}, e_{1}+2 e_{2}\right\rangle_{G}=0
$$

i.e. $U_{1}^{\perp}=\left\langle e_{1}+2 e_{2}\right\rangle$ (which is an eigenvector of $\rho(-1)$ with eigenvalue one!)

Corollary 6.8. Every complex representation (V, ρ) of a finite group G decomposes as a direct sum of irreducible representations:

$$
V=U_{1} \oplus \cdots \oplus U_{m}
$$

Proof. If V is irreducible, then the Corollary is trivially true. Otherwise V has an invariant subspace $U \subset V$, and then V decomposes as $V=U \oplus U^{\perp}$ via the Proposition. Then we apply the Proposition to U and U^{\perp} individually and proceed until we get the desired decomposition.
Corollary 6.9. If $A \in \operatorname{Aut}\left(\mathbb{C}^{n}\right)$ and $A^{d}=I_{n}$, then A is semi-simple, i.e. \mathbb{C}^{n} has a basis of eigenvectors of the matrix A.

Proof. Let $G=C_{n}$, and $\left(\mathbb{C}^{n}, \rho\right)$ be the representation determined by $\rho(x)=A$. Then A has an eigenvector v_{1} with eigenvalue λ_{1}. Moreover, since:

$$
A^{m} v_{1}=\lambda_{1}^{m} v_{1}
$$

it follows that v_{1} is an eigenvector for all powers of A, and $\left\langle v_{1}\right\rangle$ is an invariant subspace of \mathbb{C}^{n}. Let $U^{\perp} \cong \mathbb{C}^{n-1}$ be the complementary invariant subspace from the Proposition. Then by induction on $n, A: U^{\perp} \rightarrow U^{\perp}$ has a basis v_{2}, \ldots, v_{n} of eigenvectors, and so $v_{1}, v_{2}, \ldots, v_{n}$ is a basis of eigenvectors of \mathbb{C}^{n}.
Corollary 6.10. If $\left(\mathbb{C}^{n}, \rho\right)$ is a representation of a finite group G, then each

$$
\rho(g)=A_{g} \text { is semi-simple }
$$

Proof. Each of these matrices has order d for some d.
An Irreducible Complex Representation. Let $D_{2 n}$ be the dihedral group, generated by two elements g_{1} and g_{2} with relations:

$$
g_{1}^{2}=1, g_{2}^{2}=1 \text { and }\left(g_{1} g_{2}\right)^{n}=1
$$

We've seen in $\S 4$ that one representation of $D_{2 n}$ is given by the symmetries of the regular n-gon (with vertices at $(\cos (2 \pi m / n), \sin (2 \pi m / n)$) and reflections:

$$
\rho\left(g_{1}\right)=\left[\begin{array}{rr}
\cos (2 \pi / n) & \sin (2 \pi / n) \\
\sin (2 \pi / n) & -\cos (2 \pi / n)
\end{array}\right] \text { and } \rho\left(g_{2}\right)=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

with

$$
\rho\left(g_{1} g_{2}\right)=\left[\begin{array}{rr}
\cos (2 \pi / n) & -\sin (2 \pi / n) \\
\sin (2 \pi / n) & \cos (2 \pi / n)
\end{array}\right]
$$

Using the same matrices, we promote this to a representation of $D_{2 n}$ on \mathbb{C}^{2}.
This complex representation of $D_{2 n}$ is irreducible since any invariant line would be spanned by a common eigenvector for $\rho\left(g_{1}\right)$ and $\rho\left(g_{2}\right)$, and by virtue of being reflections across different lines of symmetry, these share no common eigenvectors. Specifically, the invariant lines for these transformations are $(y=\tan (2 \pi / n) x)$ and $(y=-\cot (2 \pi / n))$ for the matrix $\rho\left(g_{1}\right)$ and $(x=0)$ and $(y=0)$ for $\rho\left(g_{2}\right)$.

Contrast this with the two-dimensional complex representation of the cyclic group C_{n} given by the rotation matrix:

$$
\rho(x)=\left[\begin{array}{rr}
\cos (2 \pi / n) & -\sin (2 \pi / n) \\
\sin (2 \pi / n) & \cos (2 \pi / n)
\end{array}\right]
$$

which has two invariant (complex) lines $\left\langle e_{1}+i e_{2}\right\rangle$ and $\left\langle e_{1}-i e_{2}\right\rangle$ that correspond to the two characters χ_{-1} and χ_{1}, respectively.

Finally, consider the "pair of" two-dimensional representations of the group S_{3} :

$$
\rho\left(g_{1}\right)=\left[\begin{array}{rr}
-1 & 1 \\
0 & 1
\end{array}\right] \text { and } \rho\left(g_{2}\right)=\left[\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right]
$$

(from Example 2) and:

$$
\tau\left(g_{1}\right)=\left[\begin{array}{rr}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right] \text { and } \tau\left(g_{2}\right)=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

viewing S_{3} as the dihedral group D_{6} acting on the equilateral triangle.
I claim that these are the same representation of S_{3}, with the different matrix representations an artifact of the choice of different bases for \mathbb{C}^{2}. In other words, we seek a single "change of basis" matrix B such that:

$$
B^{-1}\left[\begin{array}{rr}
-1 & 1 \\
0 & 1
\end{array}\right] B=\left[\begin{array}{rr}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]
$$

and

$$
B^{-1}\left[\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right] B=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

It is easiest to work with the second equation, and to recall that because the change of basis B converts to a diagonal matrix, then:

$$
B=\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right] \text { where }\left[\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right] v_{1}=v_{1} \text { and }\left[\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right] v_{2}=-v_{2}
$$

i.e. v_{1} and v_{2} are eigenvectors with +1 and -1 eigenvalues. A bit of fiddling gives:

$$
v_{1}=\lambda_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right] \text { and } v_{2}=\lambda_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { for } \lambda_{1}, \lambda_{2} \in \mathbb{C}^{*}
$$

and then plugging in for B we find that setting $\lambda_{2} / \lambda_{1}=\sqrt{3}$ gives

$$
B^{-1}\left[\begin{array}{rr}
-1 & 1 \\
0 & 1
\end{array}\right] B=\left[\begin{array}{rr}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]
$$

