Categories, Symmetry and Manifolds

Math 4800, Fall 2020
5. Groups. The symmetries of an object X (in a given category) form a group with composition as the group operation. It is instructive to consider the category of groups, in order to define the action of a group G on an object X as a morphism from G to the group of symmetries of X. An action of G on a vector space V is called a representation of G. There is a conjugation action of a group G on itself that breaks the group up into conjugacy classes. We revisit some of the finite groups we have encountered (e.g. $C_{n}, D_{2 n}, A_{n}, S_{n}$) from this point of view and also begin to explore the circle and the special unitary group $\mathrm{SU}(2)$.
Definition 5.1. A group $(G, \cdot, 1)$ is a set G with an associative multiplication:

$$
\cdot: G \times G \rightarrow G
$$

and an element $1 \in G$ that is a two-sided identity: $1 \cdot g=g=g \cdot 1$ for all $g \in G$, such that each $g \in G$ has a (unique) two-sided inverse g^{-1} with $g^{-1} g=1=g g^{-1}$.
Examples. (a) Abelian groups have the additional commutative property, which can be captured by the relation:

$$
g h=h g \text { or equivalently } g h g^{-1} h^{-1}=1 \text { for all } g, h \in G
$$

(b) The symmetries $\left(\operatorname{Aut}(X), \circ, 1_{X}\right)$ of an object X of a category \mathcal{C} are a group, with composition of symmetries as the group multiplication.
Definition 5.2. A subset $H \subset G$ is a subgroup if $1 \in H$ and H is closed under multiplication and inverses.
Examples. (a) The alternating subgroup $A_{n} \subset S_{n}=\operatorname{Aut}([n])$.
(b) The Klein subgroup

$$
K_{4}=\left\{\operatorname{id}_{[4]},(12)(34),(13)(24),(14)(23)\right\} \subset A_{4} \subset S_{4}
$$

(c) If G is any group and $g \in G$, then:

$$
\langle g\rangle=\left\{\ldots, g^{-2}, g^{-1}, 1, g, g^{2}, \ldots\right\} \subset G \text { is a cyclic subgroup of } G
$$

This is either infinite cyclic or a cyclic group C_{d}. This is the smallest subgroup containing the element g. More generally, $\left\langle g_{1}, \ldots ., g_{n}\right\rangle \subset G$ is the smallest subgroup containing g_{1}, \ldots, g_{n}. It consists of all "words" in letters g_{1}, \ldots, g_{n} and $g_{1}^{-1}, \ldots, g_{n}^{-1}$.
(d) The group $O(n, \mathbb{R})$ of orthogonal transformations of \mathbb{R}^{n} is a subgroup of the group of symmetries of the metric space (\mathbb{R}, d) and a subgroup of the symmetries of the vector space \mathbb{R}^{n}. The group $T_{\mathbb{R}^{n}}$ of translations is another subgroup of the Euclidean group (but translations are not linear). We've seen subgroups:

$$
C_{n} \subset D_{2 n} \subset O(2, \mathbb{R}) \text { and } A_{4}, S_{4}, A_{5} \subset O(3, \mathbb{R})
$$

defined as the symmetries of regular polygons and Platonic solids in $\S 3$.
Definition 5.2. (i) A morphism (or homomorphism) of groups is a function: $f: G \rightarrow H$ such that $f(1)=1$ and $f\left(g_{1} \cdot g_{2}\right)=f\left(g_{1}\right) \cdot f\left(g_{2}\right)$ for all $g_{1}, g_{2} \in G$.
(ii) A morphism $\rho: G \rightarrow \operatorname{Aut}(X)$ is an action of G on an object X.

This defines the category $\mathfrak{G} r$ of groups. As in $\S 2$ and $\S 4$, we have:
Observation. If a morphism $f: G \rightarrow H$ of groups is a bijection, then $f^{-1}: H \rightarrow G$ is also a morphism of groups, so isomorphisms in $\mathfrak{G} r$ are bijective morphisms.

Examples. (a) The sign of a permutation is a morphism sgn : $S_{n} \rightarrow\{ \pm 1\}$.
(b) The determinant of an $n \times n$ matrix is a morphism det: $\operatorname{GL}(n, F) \rightarrow F^{*}$ from the general linear group of symmetries of F^{n} to the multiplicative group $\left(F^{*}, \cdot, 1\right)=\mathrm{GL}(1, F)$ of the field F.
(c) The permutation action of S_{n} on the vector space F^{n} is given by:

$$
\rho_{p}: S_{n} \rightarrow \mathrm{GL}(n, F), \quad \rho_{p}(\sigma)\left(e_{i}\right)=e_{\sigma(i)}
$$

$\mathbf{(} \mathbf{n}=\mathbf{2})$ The two permutations 1 and (12) map to:

$$
\rho_{p}(1)=I_{2} \text { and } \rho_{p}\left(\begin{array}{ll}
1 & 2)
\end{array}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right.
$$

$(\mathbf{n}=\mathbf{3})$ The six permutations $1,\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right),\binom{1}{2},\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{ll}2 & 3\end{array}\right)$ map to:

$$
\rho_{p}(1)=I_{3}, \rho_{p}\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \rho_{p}\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right], \text { etc }
$$

(d) The cyclic group $C_{d}=\left\{1, g, \ldots, g^{d-1}, g^{d}=1\right\}$ acts on the vector space \mathbb{C}^{1} by:

$$
\rho\left(g^{k}\right)=\text { multiplication by } e^{2 k \pi i / d} \in \mathrm{GL}(1, \mathbb{C})=\left(\mathbb{C}^{*}, \cdot, 1\right)
$$

If we instead view $\mathbb{C}=\mathbb{R}^{2}$, the action is by rotations:

$$
\rho\left(g^{k}\right)=\left[\begin{array}{rr}
\cos (2 k \pi / d) & -\sin (2 k \pi / d) \\
\sin (2 k \pi / d) & \cos (2 k \pi / d)
\end{array}\right]
$$

which we can think of as an action of C_{d} either on the vector space \mathbb{R}^{2} or on the metric space $\left(\mathbb{R}^{2}, d\right)$, since orthogonal transformations are symmetries of both.
(e) Left multiplication determines an action of G on itself as a set:

$$
\rho_{l}(g)=\text { left multiplication by } g \text {, i.e. } \rho_{l}(g)(h)=g h
$$

converting elements of G into permutations of the set G. It is an action because:

$$
\rho_{l}\left(g g^{\prime}\right)(h)=\left(g g^{\prime}\right) h=g\left(g^{\prime} h\right)=\rho_{l}(g) \circ \rho_{l}\left(g^{\prime}\right)(h)
$$

so ρ_{l} converts group multiplication to composition of permutations.
For example if $G=S_{3}$, then $\rho_{l}: S_{3} \rightarrow S_{6}$ maps elements of S_{3} to permutations of the six elements of S_{3}. We can be explicit, ordering S_{3} (with letters for clarity):

$$
a=1, b=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right), c=\left(\begin{array}{ll}
1 & 3
\end{array}\right), d=\left(\begin{array}{ll}
1 & 2
\end{array}\right), e=\left(\begin{array}{ll}
1 & 3
\end{array}\right), f=\left(\begin{array}{ll}
2 & 3
\end{array}\right)
$$

and then $\rho_{l}(1)=\mathrm{id}, \rho_{l}\left(\begin{array}{ll}123\end{array}\right)=\left(\begin{array}{ll}a b c\end{array}\right)(d e f), \rho_{l}(12)=(a d)(b f)(c e)$, etc.
(f) In contrast, there is an action of G on itself as a group given by conjugation:

$$
\rho_{c}(g)=\text { conjugation by } g \text {, i.e. } \rho_{c}(g)(h)=g h g^{-1}
$$

This is not just a permutation of the set G, but a morphism from G to itself, i.e. a symmetry of G in the category of groups, since:

$$
\rho_{c}(1)=\text { id and } \rho_{c}(g)\left(h h^{\prime}\right)=g\left(h h^{\prime}\right) g^{-1}=\left(g h g^{-1}\right)\left(g h^{\prime} g^{-1}\right)=\rho_{c}(g)(h) \cdot \rho_{c}(g)\left(h^{\prime}\right)
$$

It is an action since $\rho_{c}\left(g g^{\prime}\right)(h)=\left(g g^{\prime}\right) h\left(g g^{\prime}\right)^{-1}=g\left(g^{\prime} h g^{\prime-1}\right) g^{-1}=\rho_{c}(g) \circ \rho_{c}\left(g^{\prime}\right)(h)$.
Notice that the conjugation action of an abelian group on itself is trivial:

$$
\rho_{c}(g)(h)=g h g^{-1}=h g g^{-1}=h \text { for all } g \text { and all } h
$$

This is in contrast to the left multiplication action, which is never trivial.

If $f: G \rightarrow H$ is a morphism, then:
(a) The image $I=f(G) \subset H$ is a subgroup, and
(b) The kernel $K=f^{-1}(1) \subset G$ is a subgroup with the additional property:
(*) For all $k \in K$ and $g \in G, g k g^{-1} \in K$
This property holds since $f\left(g k g^{-1}\right)=f(g) f(k) f\left(g^{-1}\right)=f(g) f\left(g^{-1}\right)=f(1)=1$.
Definition 5.3. Any subgroup $K \subset G$ with property $(*)$ above is called normal To distinguish normal subgroups from "ordinary" subgroups, one writes: $K \triangleleft G$.
Observation. If $H \subset G$ is a subgroup, then:

$$
\rho_{c}(H)=\left\{g h g^{-1} \mid h \in H\right\}
$$

is another subgroup of G. A subgroup $K \subset G$ is normal if $\rho_{c}(K)=K$.
Proposition 5.4. (a) The left cosets of a subgroup $H \subset G$ are the subsets:

$$
g H=\{g \cdot h \mid h \in H\}
$$

and the right cosets are:

$$
H g=\{h \cdot g \mid h \in H\}
$$

The right (or left) cosets of H partition G into equivalence classes of the same cardinality as H, and we conclude that if G is a finite group, then $|H|$ divides $|G|$ for all subgroups (Lagrange's Theorem). In particular, the order of any element $g \in G(=$ the number of elements in $\langle g\rangle)$ divides $|G|$ when G is a finite group.
(b) If $K \triangleleft G$ is a normal subgroup, then $g K=K g$ for all g, and:

$$
g_{1} K \cdot g_{2} K=\left(g_{1} g_{2}\right) K
$$

is a well-defined multiplication on cosets, defining a quotient group G / K of cosets.
Examples. (a) Every subgroup of an abelian group is normal.
(b) The alternating subgroup $A_{n} \subset S_{n}$ is normal, since it is the kernel of the sign homomorphism (or you can verify it directly).
(c) The subgroup $S_{n} \subset S_{n+1}$ of permutations of [n] inside permutations of $[n+1]$ is not normal, since, for example,

$$
(n n+1)(12 \cdots n)(n n+1)=(12 \cdots n-1 n+1) \notin S_{n}
$$

(d) By direct computation, you can verify that $K_{4} \subset S_{4}$ is a normal subgroup. Or else, one can directly find a homomorphism $f: S_{4} \rightarrow S_{3}$ with kernel equal to K_{4}. One beautiful way to do this is to map a symmetry of the cube to the permutation group of the three "axles" of the cube (lines joining the midpoints of opposite sides).
Definition 5.5. A group G is simple if $\{1\}$ and G are its only normal subgroups.
Examples. (a) Among the abelian groups, in which every subgroup is normal, the only simple groups are the cyclic groups C_{p} of prime order.
(b) S_{n} for $n>2$ are not simple, due to the normal subgroups $A_{n} \subset S_{n}$.

Theorem 5.6. The alternating groups A_{n} for $n \geq 5$ are simple.
(See an advanced algebra class for the proof of this.).
We next turn to the conjugacy classes of a group. This is a list of the "orbits" of the elements of G under the action of conjugation.

Definition 5.7. Elements $h, h^{\prime} \in G$ are conjugate if:

$$
\rho_{c}(g)(h)=g h g^{-1}=h^{\prime} \text { for some } g \in G
$$

This induces an equivalence relation on G by:

$$
h \sim h^{\prime} \text { if and only if } h \text { and } h^{\prime} \text { are conjugate }
$$

The equivalence classes are the conjugacy classes of G.
Remark. A subgroup of G is normal if and only if it is a union of conjugacy classes!
Finite Examples. (a) Cyclic groups. The conjugacy classes of C_{n} are singletons:

$$
\{1\},\{x\},\left\{x^{2}\right\}, \ldots,\left\{x^{n-1}\right\}
$$

as are the conjugacy classes of all abelian groups.
(b) Dihedral groups. From the relations $x^{n}=1=y^{2}$ and $y x=x^{-1} y$ on:

$$
D_{2 n}=\left\{1, x, x^{2}, \ldots, x^{n-1}, y, x y, \ldots, x^{n-1} y\right\}
$$

we get conjugacy classes:

$$
\{1\},\left\{x, x^{-1}\right\}, \ldots,\left\{x^{k}, x^{-k}\right\}, \ldots,\left\{y, y x^{2}, y x^{4}, \ldots .\right\},\left\{y x, y x^{3}, \ldots .\right\}
$$

but this needs to be taken with a grain of salt. For example, for small n :

$$
\begin{gathered}
D_{4}:\{1\},\{x\},\{y\},\{y x\} \text { since } x=x^{-1} \\
D_{6}:\{1\},\left\{x, x^{2}\right\},\left\{y, y x^{2}, y x\right\} \text { since } x^{4}=x \\
D_{8}:\{1\},\left\{x, x^{3}\right\},\left\{x^{2}\right\},\left\{y, y x^{2}\right\},\left\{y x, y x^{3}\right\} \\
D_{10}:\{1\},\left\{x, x^{4}\right\},\left\{x^{2}, x^{3}\right\},\left\{y, y x^{2}, y x^{4}, y x, y x^{3}, y x^{5}\right\}
\end{gathered}
$$

(c) Groups of permutations. If $\sigma:[n] \rightarrow[n]$ is a symmetry, then conjugating a symmetry in cycle notation by σ has the effect of replacing each entry i with $\sigma(i)$. In other words, if $\tau(i)=j$, then:

$$
\sigma \circ \tau \circ \sigma^{-1}(\sigma(i))=\sigma \circ \tau(i)=\sigma(j)
$$

Thus, for example, if $\sigma=\left(\begin{array}{ll}1 & 2\end{array}\right)$, then:

$$
\sigma(13) \sigma^{-1}=(\sigma(1) \sigma(3))=\left(\begin{array}{ll}
2 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)
$$

As a consequence, the partitions of $[n]$ are in bijection with the conjugacy classes.

$$
\begin{gathered}
S_{2}:\{(1)(2)\},\{(12)\} \\
S_{3}:\{(1)(2)(3)\},\{(12)(3),(13)(2),(1)(23)\},\left\{(123),\left(\begin{array}{ll}
1 & 3
\end{array}\right)\right\} \\
S_{4}:\{(*)(*)(*)(*)\},\{(* *)(*)(*)\},\{(* *)(* *)\},\{(* * *)(*)\},\{(* * * *)\}
\end{gathered}
$$

Infinite Examples. (a) Conjugating a rotation by a reflection gives:

$$
\rho_{\theta_{2} / 2} \circ \phi_{\theta_{1}} \circ \circ \rho_{\theta_{2} / 2}=\rho_{\theta_{2} / 2} \circ \rho_{\left(\theta_{1}+\theta_{2}\right) / 2}=\phi_{-\theta_{1}}
$$

and conjugating a reflection by a rotation gives:

$$
\phi_{\theta_{2}} \rho_{\theta_{1} / 2} \phi_{-\theta_{2}}=\rho_{\left(\theta_{1} / 2\right)+\theta_{2}}
$$

and the conjugacy classes of the infinite dihedral group $\mathrm{O}(2, \mathbb{R})$ are:
(i) All reflections are in the same conjugacy class $\mathrm{O}(2, \mathbb{R})^{-}$(a circle!), and
(ii) Conjugacy classes of rotations are either $\left\{\phi_{0}\right\},\left\{\phi_{\pi}\right\}$ or else $\left\{\phi_{\theta}, \phi_{-\theta}\right\}$.
(d) In the group $\mathrm{GL}(n, \mathbb{C})$, recall from $\S 4$ that if:

$$
A_{1} \sim A_{2} \text { then } \operatorname{ch}\left(A_{1}\right)=\operatorname{ch}\left(A_{2}\right)
$$

and in particular, the eigenvalues of A_{1} and A_{2} are the same.

- A matrix A is semi-simple if a diagonal matrix is in the conjugacy class of A, and the location of the eigenvalues on the diagonal are permuted under conjugation by permutation matrices, so there is one semi-simple conjugacy class for every list of complex numbers (maybe with repetitions): $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$.
- General matrices have one conjugacy class of every list of "Jordan blocks."

Unitary Groups. The standard Hermitian inner product on \mathbb{C}^{n} is:

$$
\langle\vec{z}, \vec{w}\rangle=\left\langle\left(z_{1}, \ldots, z_{n}\right),\left(w_{1}, \ldots, w_{n}\right)\right\rangle=\sum_{i=1}^{n} z_{i} \bar{w}_{i} \in \mathbb{C}
$$

It is not bilinear, but rather "conjugate" bilinear:

$$
\langle\vec{w}, \vec{z}\rangle=\overline{\langle\vec{z}, \vec{w}\rangle},\langle c \vec{z}, \vec{w}\rangle=c\langle\vec{z}, \vec{w}\rangle \text { and }\langle\vec{z}, c \vec{w}\rangle=\bar{c}\langle\vec{z}, \vec{w}\rangle
$$

It is positive definite, in the sense that:

$$
\langle\vec{z}, \vec{z}\rangle=\sum_{i=1}^{n} z_{i} \bar{z}_{i}=\sum_{i=1}^{n}\left|z_{i}\right|^{2}
$$

is real and strictly positive for all non-zero vectors $\vec{z} \in \mathbb{C}^{n}$.
Definition 5.8. A \mathbb{C}-linear map $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is a unitary transformation if:

$$
\langle f(\vec{z}), f(\vec{w})\rangle=\langle\vec{z}, \vec{w}\rangle
$$

for all vectors $\vec{z}, \vec{w} \in \mathbb{C}^{n}$.
This is the complex analogue of an orthogonal transformation. The unit sphere:

$$
S^{2 n-1}=\left\{\vec{u}=\left(s_{1}+i t_{1}, \ldots, s_{n}+i t_{n}\right) \in \mathbb{C}^{n} \mid\langle\vec{u}, \vec{u}\rangle=\sum_{i=1}^{n} s_{i}^{2}+t_{i}^{2}=1\right\}
$$

is preserved under a unitary transformation, as is orthogonality:

$$
\langle\vec{z}, \vec{w}\rangle=0 \Rightarrow\langle f(\vec{z}), f(\vec{w})\rangle=0
$$

Thus to specify a unitary transformation A (in matrix form), one specifies:

$$
f\left(e_{1}\right)=\vec{u}_{1}, \ldots, f\left(e_{n}\right)=\vec{u}_{n}, \text { pairwise orthogonal unit vectors in } S^{2 n-1}
$$

and then in this case,
from which it follows that $\operatorname{det}(A) \cdot \overline{A \cdot \overline{A^{T}}}=I_{n} . \overline{\operatorname{det}(A)}=1$ and so $\operatorname{det}(A)=e^{i \theta} \in \mathbb{C}$ for some θ.
Definition 5.9. (a) $U(n)$ is the group of unitary transformations of \mathbb{C}^{n}.
(b) $S U(n) \subset U(n)$ is the subgroup of unitary transformations of determinant 1 . This is called the special unitary group.
Example. The Unitary group $U(1)$ consists of the unit circle of rotations of \mathbb{C}.

Theorem 5.10. The special unitary group $\mathrm{SU}(2)$ is isomorphic to the group of unit quaternions, each giving the three-sphere S^{3} the structure of a group.

Proof. The quaternions (or Hamiltonians) are the \mathbb{R}-vector space:

$$
\mathbb{H}=\mathbb{R}+\mathbb{R} \mathbf{i}+\mathbb{R} \mathbf{j}+\mathbb{R} \mathbf{k}
$$

with an associative (but not commutative) multiplication defined by linearity and:

$$
\begin{gathered}
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-1 \\
\mathbf{i} \cdot \mathbf{j}=\mathbf{k}=-\mathbf{j} \cdot \mathbf{i}, \quad \mathbf{j} \cdot \mathbf{k}=\mathbf{i}=-\mathbf{k} \cdot \mathbf{j}, \quad \mathbf{k} \cdot \mathbf{i}=\mathbf{j}=-\mathbf{i} \cdot \mathbf{k}
\end{gathered}
$$

It follows that:

$$
(a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k})(a-b \mathbf{i}-b \mathbf{j}-c \mathbf{k})=a^{2}+b^{2}+c^{2}+d^{2}
$$

This is interpreted as multiplication by the quaternionic conjugate and

$$
(a+b \vec{i}+c \vec{j}+d \vec{k})^{-1}=\frac{\overline{(a+b \vec{i}+c \vec{j}+d \vec{k})}}{a^{2}+b^{2}+c^{2}+d^{2}}
$$

making the quaternions into a division algebra (with all the properties of a field other than commutativity of multiplication). The unit quaternions:

$$
S^{3}=\{\vec{u} \in \mathbb{H} \mid \vec{u} \cdot \overline{\vec{u}}=1\}
$$

are thus a group with quaternion multiplication.
An element of $\mathrm{SU}(2, \mathbb{C})$ is a 2×2 matrix of orthonormal complex vectors:

$$
A=\left[\begin{array}{ll}
s_{1}+i t_{1} & u_{1}+i v_{1} \\
s_{2}+i t_{2} & u_{2}+i v_{2}
\end{array}\right]
$$

of determinant one. Up to multiplication by a (complex) scalar λ,

$$
\left(s_{1}+i t_{1}, s_{2}+i t_{2}\right)^{\perp}=\left(s_{2}-i t_{2},-\left(s_{1}-i t_{1}\right)\right)
$$

and with the condition $s_{1}^{2}+t_{1}^{2}+s_{2}^{2}+t_{2}^{2}=1$ and $\operatorname{det}(A)=1$, we get $\lambda=-1$ and:
$A=\left[\begin{array}{cc}s_{1}+i t_{1} & -s_{2}+i t_{2} \\ s_{2}+i t_{2} & s_{1}-i t_{1}\end{array}\right]=s_{1} I_{2}+t_{1}\left[\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right]+s_{2}\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]+t_{2}\left[\begin{array}{cc}0 & -i \\ -i & 0\end{array}\right]$
and one checks that the morphism defined by:

$$
I_{2} \mapsto 1,\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right] \mapsto \mathbf{i},\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \mapsto \mathbf{j},\left[\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right] \mapsto \mathbf{k}
$$

determines the desired isomorphism of groups.
Proposition 5.11. The unit sphere $S^{2} \subset \mathbb{R} \mathbf{i}+\mathbb{R} \mathbf{j}+\mathbb{R} \mathbf{k}$ "equator" is a single conjugacy class of $\mathrm{SU}(2)=S^{3} \subset \mathbb{H}$ and the conjugation action of $\mathrm{SU}(2)$ on S^{2} is by (special) orthogonal transformations.

Proof. Group conjugation by $a+\vec{v} \in \mathrm{SU}(2)$ is a linear transformation, since quaternionic multiplication is bilinear. Notice that the quaternion conjugate $\overline{a+\vec{v}}=$ $a-\vec{v}$ is the quaternion inverse, since $a^{2}+|\vec{v}|^{2}=1$ by assumption. Quaternion multiplication is given in terms of the dot an cross product of vectors in \mathbb{R}^{3} by:

$$
(a+\vec{v})(b+\vec{w})=(a b-\vec{v} \cdot \vec{w})+(a \vec{w}+b \vec{v}+\vec{v} \times \vec{w})
$$

Now suppose $\vec{u} \in S^{2}$, and $a+l \vec{u} \in \mathrm{SU}(2)$. Then $\vec{u}(a-l \vec{u})=l+a \vec{u}$ and:

$$
(a+l \vec{u}) \vec{u}(a-l \vec{u})=(a+l \vec{u})(l+a \vec{u})=a l+a^{2} \vec{u}+l^{2} \vec{u}-a l=\vec{u}
$$

so \vec{u} is a fixed vector for this linear transformation.

Now suppose that $\vec{v} \in S^{2}$ and let $\vec{w}=\vec{v} \times \vec{u}$. Then $\vec{w} \in S^{2}$ and \vec{w} perpendicular to both \vec{v} and \vec{u}. Then $\vec{v}(a-l \vec{u})=a \vec{v}-l(\vec{w})$ and:
$(a+l \vec{u}) \vec{v}(a-l \vec{u})=(a+l \vec{u})(a \vec{v}-l \vec{w})=a^{2} \vec{v}-a l \vec{w}+a l(-\vec{w})-l^{2} \vec{v}=\left(a^{2}-l^{2}\right) \vec{v}-(2 a l) \vec{w}$ and similarly, $(a+l \vec{u}) \vec{w}(a-l \vec{u})=(2 a l) \vec{v}+\left(a^{2}-l^{2}\right) \vec{w}$.

But then in terms of the basis $\{\vec{u}, \vec{v}, \vec{w}\}$ for \mathbb{R}^{3}, conjugation by $(a+l \vec{u})$ is:

$$
A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \text { with } \cos (\theta)=\left(a^{2}-l^{2}\right) \text { and } \sin (\theta)=-2 a l
$$

i.e. it is the rotation by θ about the fixed vector \vec{u}, and an element of $\mathrm{SO}(3)$!

From this, we get the famous "double cover" surjective group homomorphism:

$$
\phi: \mathrm{SU}(2) \rightarrow \mathrm{SO}(3, \mathbb{R}) \text { with kernel } \phi^{-1}\left(I_{3}\right)= \pm 1
$$

Since the action of $\operatorname{SO}(3, \mathbb{R})$ is transitive, i.e. for each pair of vectors $\vec{u}_{1}, \vec{u}_{2} \in S^{2}$, there is an orthogonal transformation taking \vec{u}_{1} to \vec{u}_{2}, it follows that S^{2} is a single conjugacy class for the action of $\mathrm{SU}(2)$.
Remark. All special orthogonal groups $\mathrm{SO}(n, \mathbb{R})$ for $n \geq 3$ have canonical double covers by the so-called "spin" groups. Only when $n=3$, however, is the spin group also a (special) unitary group.

Assignment 5.

1. (a) Find a cyclic subgroup of S_{5} with 6 elements. Is it a normal subgroup?
(b) Is there a subgroup of S_{4} with 8 elements? If so, how many are there?
2. Show that if G is a group with $2 n$ elements and $H \subset G$ is a subgroup with n elements, then H is necessarily a normal subgroup of G.
3. (a) Find all the conjugacy classes of A_{4}.
(b) Find all the conjugacy classes A_{5}. Hint: They are not the same as the conjugacy classes of S_{5} that happen to be in A_{5}, but it is a good start to find these, since the conjugacy classes of A_{5} are subsets of them.
4. Identify the left cosets of the subgroups $S_{n} \subset S_{n+1}$ with the sets:

$$
L_{i}=\left\{\sigma \in S_{n+1} \mid \sigma(n+1)=i\right\}
$$

and the right cosets with the sets:

$$
R_{i}=\left\{\sigma \in S_{n+1} \mid \sigma(i)=n+1\right\}
$$

and in particular show that these are not the same!
5. When $\rho: G \rightarrow \operatorname{Aut}(X)$ is the action of a group G on a set X, the stabilizer of an element $x \in X$ is $G_{x}:=\{g \in G \mid \rho(g)(x)=x\} \subset G$.
(a) Prove that G_{x} is a subgroup of G.

The G-orbit of $x \in X$ is $G x:=\{y \in X$ such that $\rho(h)(x)=y$ for some $h \in G\}$.
(b) Find a bijection between the left cosets $h G_{x}$ of G_{x} and $G x \subset X$.
(c) If $y \in G x$, prove that G_{x} and G_{y} are conjugate subgroups of G.
(d) Find the stabilizer of $(0,0,1)$ for the action of $\mathrm{SO}(3, \mathbb{R})$ on the sphere S^{2}.
(e) Find the stabilizer of $(0,0,1)$ for the action of $\mathrm{SU}(2)$ on the sphere S^{2}.

