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7. G-Linear Maps. We turn our attention now to morphisms of representations,
i.e. to G-linear maps of vector spaces equipped with actions of the group G.

Let (V, ρ) and (W, τ) be representations of a group G, and let:

homG(V,W ) ⊂ hom(V,W )

be the vector subspace of G-linear maps f : V →W .

Proposition 7.1. The kernel, image and cokernel of aG-linear map f ∈ homG(V,W )
are also representations of G.

Proof. The kernel K = ker(f) is an invariant subspace of V since if f(v) = 0,
then f(gv) = gf(v) = g0 = 0. Similarly, the image I = f(V ) is an invariant
subspace of W , since if w = f(v) for some v ∈ V , then gw = f(gv). Finally, the
cokernel is:

W/I = {w + f(V )} and g(w + f(V )) = gw + f(V )

is a well-defined action of G on the coset vector space W/I since I is invariant. �

Example. (a) Let V = U⊕W be a direct sum of (complementary)G-representations,
and consider the G-linear inclusion map i : U → V . Then the map:

q : W → V/U, q(w) = w + U

is an isomorphism and G-linear. We say that this quotient “lifts” to the sub-
representation W ⊂ V via the isomorphism q−1 : V/U →W followed by W ⊂ V .

(b) Consider the trivial sub-representation 〈e1〉 of the representation

ρ(z) =

[
1 z
0 1

]
of (C,+, 0) on C2

Then C2/〈e1〉 is also trivial since z · (e2 + 〈e1〉) = (ze1 + e2) + 〈e1〉 = e2 + 〈e1〉.
Thus in this case both the invariant subspace 〈e1〉 and the quotient space are trivial
representations, even though the overall representation is not trivial. In particular,
this quotient representation does not lift to a sub-representation of C2 since if it
did, the overall representation would be trivial.

Schur’s Lemma 7.2. If V and W are irreducible complex representations of G,
then either homG(V,W ) = 0 or else homG(V,W ) is a one-dimensional vector space
of isomorphisms (with the exception of 0, which is evidently not an isomorphism).

Proof. Let f : V → W be G-linear. Then the kernel of f is G-invariant, so
ker(f) = 0 or ker(f) = V , since V is an irreducible representation. Similarly, the
image of f is G-invariant, so im(f) = 0 or im(f) = W . Putting these together, we
see that either f = 0 or else f is both injective and surjective, i.e. an isomorphism.
Now suppose h : V → W is another G-linear isomorphism. Then consider the
symmetry σ = f−1 ◦ h : V → V and the G-linear maps:

σλ = σ − λ · idV : V → V for λ ∈ C
Each of these is either 0 or an isomorphism because it is aG-linear map of irreducible
representations, but if λ is an eigenvalue of σ, then σλ has a non-trivial kernel, so
it cannot be an isomorphism, and thus σλ = 0, which gives f−1 ◦ h = λ · idV and
λ·f = h. Thus everyG-linear map is a multiple of f , i.e. dim(homG(V,W )) = 1. �
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Corollary 7.3. Suppose V is a completely reducible complex representation of G.
That is, suppose:

V = U1 ⊕ · · · ⊕ Um
is a direct sum of irreducible representations U1, ..., Um (possibly with repetitions).
Then homG(V,U) 6= 0 if and only if U ∼= Ui for some i

Proof. If U is not isomorphic to any of the Ui and h ∈ homG(V,U), then each
of the restricted maps: h|Ui

: Ui → U is the zero map by Schur’s lemma, and so:

h(v) = h(u1 + · · ·+ um) = h(u1) + · · ·+ h(um) = 0

for all v = u1 + · · ·+ um ∈ V . In other words, h itself is the zero map. �

Given a G-representation U , let

nU = U ⊕ U ⊕ · · · ⊕ U (n times)

Corollary 7.4. Let V as in Corollary 7.3 be written as:

V = n1U1 ⊕ · · · ⊕ nlUl
collecting the isomorphic representations. If U ∼= Ui, then dim(homG(V,Ui)) = ni.

Proof. This uses the second part of Schur’s lemma. If U ∼= Ui, let f : Ui → U be
an isomorphism (uniquely determined up to the choice of scalar by Schur’s Lemma).
Then any G-linear map h : V → U restricts to:

h|niUi
: Ui ⊕ · · · ⊕ Ui → U

and to a multiple of f when further restricted to each of the ni copies of Ui. Thus:

h|niUi(u1 + · · ·+ uni) = λ1f(u1) + · · ·+ λnif(uni)

and conversely, each choice of vector (λ1, ...., λni
) ∈ Cni determines a unique G-

linear map h : V → U that is λ1f + · · ·+ λn1
f when restricted to niUi. �

The Regular Representation. Let G be a finite group and define:

C[G] = 〈eg | g ∈ G〉

to be the complex vector space C|G| with one basis vector for each element g ∈ G.
This vector spaces comes equipped with the “regular” representation of G given by:

ρreg(h)(eg) = ehg

i.e. ρreg(h) permutes the basis vectors by left translation by the element h ∈ G.

Example. If G = Cn is the cyclic group, then C[Cn] = 〈ex, ex2 , . . . , exn = e1〉 and
under the regular representation,

ρreg(x)(exi) = exi+1 for i < n and ρreg(x)(exn) = ex

In other words, this is the cyclic representation of Cn from §6, which we decomposed:

Cn = ⊕n−1m=0χm

into a direct sum of n characters (one-dimensional representations).

We can think of the regular representation as the vector space of functions:

f : G→ C
from G to the complex numbers, in which eg are the “delta functions”

eg(h) = 0 if h 6= g and eg(g) = 1
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An arbitrary function f : G→ C is then a sum:

f =
∑
g∈G

f(g)eg

of f in terms of delta functions. From this point of view, the regular representation
is the action of the group G on the vector space of functions taking:

h · f = f ◦ left translation of G by h−1

which is exactly the content of: h · eg = ehg. (Note the inverse!)

Thinking of elements of C[G] as functions may or may not help when thinking
about the regular representation of finite groups, but it gives us a road map for
what to do with some groups (e.g. orthogonal or unitary groups) that are not
finite. The idea is to limit the space of all functions f : G → C (which is too big)
to more manageable G-invariant subspaces. These will not be finite-dimensional,
since in fact orthogonal and unitary groups have infinitely many irreducible complex
representations, but when we do this right, it will help us to find the countably many
complex representations.

Theorem 7.5. The regular representation C[G] of G satisfies:

homG(C[G], U) = U via the map h 7→ h(eid)

for all irreducible complex representations U of the group G. Thus in particular,

dim(homG(C[G], U)) = dim(U)

Proof. Let u ∈ U , and define a linear map hu : C[G]→ U by setting:

hu(eg) = g · u for each basis vector eg

where g · u ∈ U is the result of acting u by the group element g. In other words:

hu(
∑
g∈G

λgeg) =
∑
g∈G

λgg · u for each vector v =
∑
g∈G

λgeg ∈ C[G]

Then for all g′ ∈ G and all basis vectors eg of C[G], we have:

hu(g′ · eg) = hu(eg′g) = (g′g)u = g′(gu) = g′hu(g)

so hu is a G-linear map! Moreover, we see that: hu(eid) = id · u = u so hu maps
to u in the statement of the Theorem. If h : C[G] → U is any G-linear map with
h(eid) = u, then h(eg) = h(g · eid) = g · h(eid) = g · u, so h = hu. This completes
the proof of the Theorem! �

Putting Corollary 7.4 together with Theorem 7.5, we get:

Corollary 7.6. The regular representation of a finite group G satisfies:

C[G] =
⊕

irreducible U

dim(U)U

This gives us two fairly surprising results.

(1) Every irreducible representation of G is a summand of C[G]. Even more:

(2) The dimensions of the irreducible representations U of G satisfy:

dim(C[G]) = |G| =
∑
U

dim(U)2
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Examples. (a) The only irreducible representations of an abelian group G are
(one-dimensional) characters, so: |G| = 12 + 12 + · · · + 12 and there must be |G|
characters. We’ve seen this already for the cyclic group Cn, where we found the n
characters χ0, ...., χn−1. Now we know those are the only ones.

(b) We have found three irreducible representations of S3 = D6:

• The trivial representation (dimension one)

• The sign character (also dimension one)

• The symmetries of the equilateral triangle (dimension two)

Since 6 = 12 + 12 + 22, there are no others irreducible representations!

(c) We have found two irreducible representations of D8:

• The trivial representation (dimension one)

• The symmetries of the square (dimension two)

Since 8 = 12 +22 +3 and 3 is only a sum of squares in one way (3 = 12 +12 +12),
there are three other characters. Let’s find them. The subgroup

H = {1, x2} ⊂ D8 = {1, x, x2, x3, y, xy, x2y, x3y}
is normal since x(x2)x−1 = x2 and y(x2)y−1 = x−2yy−1 = x2, and the quotient is
the group of left cosets:

D8/H = {H,xH.yH, xyH}
Since x2 ∈ H, y2 = 1 and (xy)2 = 1, each of the cosets {xH, yH, xyH} has order
two in D8/H, and so D8/H is the Klein group C2 × C2. This is an abelian group,
so it has four characters (see (a)). Each of them determines a character of D8 via:

D8 → D8/H → C∗

These are the four characters (including the trivial character) of D8.

Remark. If H C G then each irreducible representation of G/H is an irreducible
representation of G via G→ G/H → Aut(Cn).

(d) In addition to the irreducible three-dimensional representation of A4 as the
symmetries of the tetrahedron, we can use the normal Klein subgroup:

K4 = {1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}CA4

to find three characters of A4 via the map A3 → A4/K4 = C3, and 12 = 9+1+1+1,
so we know these are all of them. The cosets making up A4/K4 are:

{K4, (1 2 3)K4, (1 3 2)K4}
which quite clearly shows that this is the cyclic group C3.

The notion of a generalized character of a representation will help us to be more
systematic about finding the irreducible representations of a finite group. Suppose
ρ : G→ Aut(V ) is a G-representation, and consider the map:

χρ : G→ C given by χρ(g) = tr(ρ(g))

i.e. χρ(g) is the trace of the matrix associated to ρ(g). If χ : G → C∗ is itself
a (one-dimensional) character, then χχ = χ, since in this case the trace is just
the complex number itself! For G-representations of dimension two or more, the
character retains a lot of important information about the representaton.
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One of the values of a generalized character is easy to compute:

Proposition 7.7. If (V, ρ) is a G-representation, then:

χρ(id) = dim(V )

Proof. The trace of the identity map is the dimension of the vector space! �

Example. The character of the two-dimesional irreducible representation of S3

described in Example 2 of §6 consists of six numbers:

χρ(id) = tr

[
1 0
0 1

]
= 2

χρ(1 2) = tr

[
−1 1

0 1

]
= 0

χρ(2 3) = tr

[
1 0
1 −1

]
= 0

χρ(1 3) = tr

[
−1 1

0 1

]
= 0

χρ(1 2 3) = tr

[
0 −1
1 −1

]
= −1

χρ(1 3 2) = tr

[
0 −1
1 −1

]
= −1

We see in particular that a generalized character can take the value 0. In fact:

(b) The character of the regular representation C[G] is:

χρ(id) = |G| and χρ(g) = 0 for all g 6= id

The former is Proposition 7.7. To see the latter, note that:

ρ(g)(eh) = egh 6= eh if g 6= id

and so the matrix for the action of g is a permutation matrix with no fixed basis
vectors, i.e. there are only zeroes on the diagonal, so the trace is zero.

Definition 7.8. A function α : G→ C is a class function if α(h) = α(ghg−1) for
all g, h ∈ G, i.e. if α is constant on the conjugacy classes of G.

Examples. (a) Let C1, ..., Cr ⊂ G be the conjugacy classes of G. The functions:

δi(g) =

{
1 if g ∈ Ci
0 otherwise

are step functions that form a basis for the vector space of class functions.

(b) Each the character χρ : G→ C of a representation ρ is a class function since

tr(ρ(g)ρ(h)ρ(g)−1) = tr(ρ(h)) for all g and h
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Theorem 7.8. Define an inner product on the space Z[G] of class functions by:

(α, β) =
1

|G|
∑
g∈G

α(g)β(g)

Then the following orthogonality relations hold among the characters:

(i) The characters of irreducible representations of G are orthonormal and

(ii) The characters of irreps are an orthonormal basis of Z[G].

Example. Before we prove this, let’s see the Theorem in practice for G = S3.

• The conjugacy classes of S3 are:

C1 = {id},C2 = {(1 2), (2 3), (1 3)},C3 = {(1 2 3), (1 3 2)}
• The irreducible representations of S3 are:

χtr (trivial), χsgn(sign), and the two-dimensional representation ρ above

We arrange the characters of these representations in a character table.

id (1 2) (1 2 3)
1 3 2

χtr 1 1 1
χsgn 1 -1 1
ρ 2 0 -1

• The first row is a list of representatives from each conjugacy class Ci

• The second row is a list of the sizes |Ci| of each conjugacy class.

• The first column is a list of the irreducible representations

• The rest of the table computes the characters of the representations.

You may now check the orthogonality relations. For example:

(χρ, χρ) =
1

6

(
22 + 2(−1)2

)
= 1 and (χtr, χsgn) =

1

6
(1 + 3 · (−1) + 2 · 1) = 0

Preliminary. The key idea in the proof is to notice that hom(V,W ) is itself a
G-representation whenever V and W are G-representations. The action of G is:

(g · f)(v) = g · f(g−1 · v)

so that (g · f) : V → W is the function that maps (g · f)(gv) = g · f(v) It is a
representation of G since ((hg) ·f)(hgv) = (hg) ·f(hgv) = h ·(g ·f)(gv) = (hg) ·f(v)
and in particular f ∈ homG(V,W ) if and only if (g · f) = f for all g ∈ G, i.e.

• homG(V,W ) is the largest subspace of hom(V,W ) on which G acts trivially

The character of hom(V,W ) is the product:

χhom(V,W)(g) = χV (g−1) · χW (g)

as one can check choosing bases of eigenvalues for g−1 : V → V and g : W →W .

In addition, notice that the character of the representation V ⊕W satisfies:

χV⊕W (g) = χV (g) + χW (g)

so that, for example, χC[G](g) =
∑
U dim(U) · χU (g).
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Proof. This relies on a pair of averaging maps. Given a representation V , define:

p : V → V by setting p(v) =
1

|G|
∑
g∈G

g · v. Then

(a) h · p(v) = p(v), so the image of p consists of G-invariant vectors of V

(b) p(v) = v for all G-invariant vectors in V .

Thus p : V → VG ⊂ V is the projection onto the subspace of G-invariant vectors,
and it follows that tr(p) = dim(VG). On the other hand,

tr(p) =
1

|G|
∑
g∈G

tr(g·) =
1

|G|
∑
g∈G

χV (g)

is the average of the values of the character of V . When we apply this to the space
hom(V,W ) of maps between representations,

dim(homG(V,W )) =
1

|G|
∑
g∈G

χV (g−1)χW (g)

If V and W are irreducible representations, then from Schur’s Lemma we get:

1

|G|
∑
g∈G

χV (g−1)χW (g) =

{
1 if V = W
0 if V 6∼= W

which is very nearly (i) of the Theorem. In fact, it is (i) since the characters of

representations of a finite group satisfy χV (g−1) = χV (g). To see this, recall that
each matrix A = ρ(g) has finite order, hence all its eigenvalues are roots of unity,
and roots of unity satisfy ζ−1 = ζ. But then the trace of A is a sum

∑
ζi of roots

of unity, and the trace of A−1 is
∑
ζ−1i =

∑
ζi = tr(A).

We prove (ii) with a weighted average function. For a class function α ∈ Z[G],

pα : V → V is defined by pα(v) =
1

|G|
∑
g∈G

α(g)g · v.

Then we claim that pα ∈ homG(V, V ). Indeed,

pα(h·v) =
1

|G|
∑
g∈G

α(g)(gh)·v =
h

|G|
∑
g∈G

α(g)(h−1gh)·v =
h

|G|
∑
g∈G

α(h−1gh)(h−1gh)·v

since α is a class function, and then this is just a reordering of the sum, so:

h

|G|
∑
g∈G

α(h−1gh)(h−1gh) · v = h · pα(v)

If V is an irreducible representation, then pα = λ · idV by Schur’s Lemma, and:

λ · dim(V ) = tr(pα) =
1

|G|
∑
g

α(g)χV (g) = (α, χV )

so that in particular, if (α, χV ) = 0, then λ = 0 and pα = 0.

If the characters of irreducible representations fail to be a basis for Z[G], then
there is a nonzero class function α ∈ Z[G] such that α is orthogonal to all characters.
That is (α, χV ) = 0 for all irreducible representations. But then by linearity,
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(α, χV ) = 0 for all characters, and pα = 0 for all representations of G. If we apply
this to the regular representation C[G], we get:

pα(eid) =
1

|G|
∑
g

α(g)eg = 0

from which we conclude that α(g) = 0 for all values of g. This is a contradiction. �

After doing all this work, let’s have some fun.

Character table for A4. The conjugacy classes of A4 are:

C1 = {id}, C2 = {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}
C3 = {(1 2 3), (1 3 4), (1 4 2), (2 4 3)}, C4 = {(1 3 2), (1 4 3), (1 2 4), (2 4 3)}

and we’ve seen that the irreducible representations of A4 are χtr, χω, χω2 , ρ where
ω = e2πi/3 and χω(1 2 3) = ω and χω2(1 2 3) = ω2 and ρ(g) is a symmetry of the
tetrahedron in three-space. Then the character table of A4 is:

id (1 2)(3 4) (1 2 3) (1 3 2)
1 3 4 4

χtr 1 1 1 1
χω 1 1 ω ω2

χω2 1 1 ω2 ω
ρ 3 -1 0 0

where the traces of ρ(g) are computed as follows:

(i) ρ((1 2)(3 4)) is a 180 degree rotation about an axis, with eigenvalues 1,−1,−1.

(ii) ρ(1 2 3) is a 120 degree rotation about an axis, with eigenvalues 1, ω, ω2.

and similarly for ρ(1 3 2).

When we have an incomplete list of irreducible representations, there are various
methods for filling in the table. If we are missing one representation, then its
character (if not the representation itself) can be deduced from the orthogonality
relations. Other methods for finding new representations include:

Multiplying by a One-dimesional Character. If (V, ρ) is a representation of
G and χ is a one-dimensional character of G, then:

ρ′(g) = χ(g) · ρ(g) : V → V

is another representation. If V is irreducible, then χ · ρ is irreducible, and:

χ′ρ = χ · χρ
because multiplying a matrix by a scalar multiplies the trace by the same scalar.
Then by the orthogonality relations, we know that:

(V, ρ′) ∼= (V, ρ) if and only if χρ′ = χρ

Thus, for example, the square of the sign character is always the trivial character,
and if ρ : S3 → Aut(C2) is the irreducible two-dimensional representation, then
(reading from the character table)

χ(ρ) = (2, 0,−1) and χsgn = (1,−1, 1), so χρ′ = (2, 0,−1)

and multiplying by the sign does not produce a new representation. However, in
the following example, tensoring by the sign
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Character Table for S4. The five conjugacy classes of S4 have representatives:

id, (1 2), (1 2 3), (1 2 3 4), (1 2)(3 4)

and via the quotient group S4/K4 = S3 and the symmetries of the cube, we count
the three irreducible representations of S3 plus one among the irreducible represen-
tations of S4. This gives the following partial character table:

id (1 2) (1 2 3) (1 2 3 4) (1 2)(3 4)
1 6 8 6 3

χtr 1 1 1 1 1
χsgn 1 -1 1 -1 1
ρtri 2 0 -1 0 2
ρcub 3 -1 0 1 -1
ρ 3

The fact that the missing character ρ is three-dimensional follows from:

24 = 12 + 12 + 22 + 32 + dim(ρ)2

and from the orthogonality relations, we obtain the full last line of the table:

(3, 1, 0,−1,−1)

and this is indeed the character of the representation χsgn · ρcub.
Another interesting way of obtaining new representations is by:

Automorphisms of G. If σ : G → G is a symmetry (in the category of groups),
and ρ : G→ Aut(V ) is a representation, then the composition:

ρ ◦ σ : G→ G→ Aut(V )

is a representation. We’ve seen in §5 that conjugating by g ∈ G is a symmetry:

σg(h) = ghg−1

but these “inner” automorphisms of G do not change conjugacy classes, and thus
do not change characters of representations. However, groups do on occasion have
“outer” automorphisms that do change characters of representations.

Character Table for A5. The five conjugacy classes of A5 have representatives:

id, (1 2)(3 4), (1 2 3), (1 2 3 4 5), (1 3 5 2 4)

and the outer automorphism σ obtained by conjugating A5 by the odd permutation
(2 3 5 4) exchanges the last two conjugacy classes (while fixing the others). Consider
the representation ρdod of A5 given by the action of A5 on the dodecahedron. Then:

ρdod((1 2)(3 4)) is a rotation by π, with trace 1 + (−1) + (−1) = −1.

ρdod(1 2 3) is a rotation by 2π/3 or 4π/3, with trace 1 + ω + ω2 = 0.

ρdod(1 2 3 4 5) is a rotation by 2mπ/5, since it is an element of order 5. If it is by

2π/5 or 8π/5, then the trace is 1+τ+τ4 = φ = (1+
√

5)/2, the golden mean, where

τ = e2πi/5. If it is by 4π/5 or 6π/5, then the trace is 1+τ2+τ3 = (1−
√

5)/2 = 1−φ.
Whichever rotation is taken by ρdod(1 2 3 4 5), the square (1 3 5 2 4) is taken to a
rotation with the opposite trace. So the character of ρdod is either:

(3,−1, 0, φ, 1− φ) or (3,−1, 0, 1− φ, φ)

and indeed, composing with the symmetry σ takes one to the other.
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Thus, we have three out of five rows of the character table for A5:

id (1 2)(3 4) (1 2 3) (1 2 3 4 5) (1 3 5 2 4)
1 15 20 12 12

χtr 1 1 1 1 1
ρ 3 -1 0 φ 1− φ

ρ ◦ σ 3 -1 0 1− φ φ
ρ1
ρ2

and once again, the dimension count will tell us the other two dimensions:

60 = 12 + 32 + 32 + dim(ρ1)2 + dim(ρ2)2

from which it follows that dim(ρ1) = 4 and dim(ρ2) = 5 since:

41 = 16 + 25 is the unique way to express 41 as a sum of squares

So we seek four and five dimensional irreducible representations of the group A5.
For the first, consider the permutation representation:

ρperm(σ)(ei) = eσ(i) for V = 〈e1, e2, ..., e5〉
The trace of ρperm(σ) is the number of elements fixed by σ, so:

χρperm = (5, 1, 2, 0, 0)

Is this the missing five-dimensional irreducible representation? No!

(χρperm , χρperm) =
1

60

(
52 + 15(12) + 20(22)

)
= 2

But we knew is wasn’t irreducible anyway, since:

e1 + e2 + e3 + e4 is an invariant vector

from which it follows that the representation (V, ρperm) satisfies

V = U ⊕W where U is the one-dimensional trivial representation

This gives us W with χW = χV − χU = (4, 0, 1,−1,−1) and this is irreducible.
This and orthogonality allows us to finish off the table:

id (1 2)(3 4) (1 2 3) (1 2 3 4 5) (1 3 5 2 4)
1 15 20 12 12

χtr 1 1 1 1 1
ρ 3 -1 0 φ 1− φ

ρ ◦ σ 3 -1 0 1− φ φ
W 4 0 1 -1 -1
ρ 5 1 -1 0 0

with the character of the missing representation. To find the representation itself,
we will need to discuss tensor products of representations.


