Math 2200-002/Discrete Mathematics

Sequences and Series

Let S be a set.
Defintion. A sequence of elements of S is a function $f: \mathbb{N} \rightarrow S$. If $f(1)=a_{1}, f(2)=a_{2}, \ldots, f(n)=a_{n}$, then may write sequence as:

$$
\left\{a_{n}\right\}_{n=1}^{\infty} \text { or just }\left\{a_{n}\right\}
$$

which is unfortunate because a sequence is not a a set since the elements of a sequence are ordered and may appear more than once.
Examples. (i) The sequence $\{a\}$ is the constant sequence $f(n)=a$.
(ii) The sequence:
$f(1)=$ Sunday, $f(2)=$ Monday, $, \ldots, f(7)=$ Saturday, $f(8)=$ Sunday,,\ldots is the days-of-the week sequence, which cycles, with $f(n+7)=f(n)$.

Some Sequences of Real Numbers

(A) A sequence of real numbers $\left\{a_{n}\right\}$ is arithmetic if:

$$
a_{n}=d(n-1)+a \text { for some real numbers } a \text { and } d
$$

That is, a_{n} is the sequence:

$$
a, a+d, a+2 d, \cdots
$$

Some Familiar Arithmetic Sequences:
(i) The sequence of even numbers: $2,4,6,8, \ldots(a=2, d=2)$.
(ii) The sequence of odd numbers: $1,3,5,7, \ldots(a=1, d=2)$.
(iii) The sequence of negatives: $-1,-2,-3, \ldots(a=-1, d=-1)$.
(B) A sequence of real numbers $\left\{a_{n}\right\}$ is geometric if:

$$
a_{n}=a r^{n-1} \text { for some real numbers } a, r
$$

(and we usually require that $a \neq 0$).
Some Familiar Geometric Sequences:
(i) Compound Interest: $a=$ principal, $r=1+$ interest rate
(ii) Half lives: $a, \frac{1}{2} a, \frac{1}{4} a, \frac{1}{8} a, \ldots$
(iii) Doubling: $a, 2 a, 4 a, 8 a, \ldots$

Definition. A recurrence relation ($R R$) for $\left\{a_{n}\right\}$ is a single! function:

$$
a_{n}=g\left(a_{n-1}, \ldots, a_{n-k}\right)
$$

expresssing a_{n} as a function of a the previous k terms of the sequence.

Examples.

(i) An RR for the arithmetic sequence $a_{n}=a+(n-1) d$ is:

$$
g\left(a_{n-1}\right)=a_{n-1}+d ; \text { i.e. } g(x)=x+d
$$

(ii) An RR for the geometric sequence $a_{n}=a r^{n-1}$ is:

$$
g\left(a_{n-1}\right)=r a_{n-1} ; \text { i.e. } g(x)=r x
$$

(iii) An RR for the Fibonacci sequence $1,1,2,3,5,8,13, \ldots$ is:

$$
g\left(a_{n-1}, a_{n-2}\right)=a_{n-1}+a_{n-2} ; \text { i.e. } g(x, y)=x+y
$$

(this RR has $k=2$, since it reaches back two terms).
Inductive Observation. If $g\left(a_{n-1}, . ., a_{n-k}\right)$ is an RR for the sequence $\left\{a_{n}\right\}$ that reaches back k terms, then the sequence $a_{n}=f(n)$ can be reconstructed from the function g and the first k terms of the sequence.
Example. (i) Arithmetic and geometric sequences are determined by their RRs and the first term of the sequence.
(ii) The Fibonacci sequence requires the first two terms

$$
a_{1}=1, a_{2}=1
$$

and the $\operatorname{RR} g\left(a_{n-1}, a_{n-2}\right)=a_{n-1}+a_{n-2}$. A different two terms, e.g.

$$
b_{1}=1, b_{2}=3
$$

determine a different sequence with the same RR. In this case:

$$
1,3,4,7,11,18, \ldots
$$

has a name. It is called the Lucas sequence.
An interesting (and sometimes hard) question is the following:
Question. How can we recover the function $f(n)$ for a sequence from the the RR function $g\left(a_{n-1}, \ldots, g_{n-k}\right)$ and the initial k terms $a_{1}, . ., a_{k}$?
Example. The RR $g\left(a_{n-1}\right)=a_{n-1}+d$ and $a_{1}=a$ give:

$$
f(n)=a+(n-1) d \text { for arithmetic sequences }
$$

Proposition. Let ϕ and ψ be the two roots of the quadratic relation:

$$
x^{2}=x+1
$$

That is, $\phi=(1+\sqrt{5}) / 2$ (the golden mean) and $\psi=(1-\sqrt{5}) / 2$. Then:

$$
a_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\psi^{n}\right) \text { for the Fibonacci sequence }
$$

and $b_{n}=\phi^{n}+\psi^{n}$ for the Lucas sequence.

This remarkable fact gives a rapid convergence:

$$
a_{n} \sim \phi^{n} / \sqrt{5} \text { and } b_{n} \sim \phi^{n}
$$

of the terms of the sequences which you should check on your calculator!
Proof. (Step 1.) The two geometric sequences:

$$
\left\{\phi^{n}\right\}_{n-1}^{\infty} \text { and }\left\{\psi^{n}\right\}_{n-1}^{\infty}
$$

both satisfy the Fibonacci (and Lucas) RR:

$$
a_{n}=a_{n-1}+a_{n-2}
$$

since $x^{2}=x+1$ implies that $x^{n}=x^{n-1}+x^{n-2}$ (multiplying by x^{n-2}) in both the cases $x=\phi$ and $x=\psi$.
(Step 2.) Any linear combination of the two geometric sequences:

$$
s \phi^{n}+t \psi^{n}
$$

also satisfies the Fibonacci RR. Thus the proposition follows once we determine that the two sequences given by $s=1 / \sqrt{5}, t=-1 / \sqrt{5}$ and $s=1, t=1$ match the first two terms of the Fibonacci and Lucas sequences, respectively. Using $\phi^{2}=\phi+1$ and $\psi^{2}=\psi+1$, we have:

$$
\phi=(1+\sqrt{5}) / 2, \psi=(1-\sqrt{5}) / 2, \phi^{2}=(3+\sqrt{5}) / 2, \psi^{2}=(3-\sqrt{5}) / 2
$$

so

$$
\phi+\psi=1 \text { and } \phi^{2}+\psi^{2}=3 \text { matches the Lucas sequence! }
$$

and

$$
\phi-\psi=\sqrt{5} \text { and } \phi^{2}-\psi^{2}=\sqrt{5}
$$

matches $\sqrt{5}$ times Fibonacci. This proves the Proposition.
Growth Rate is an important property of sequences:
(P) $\left\{a_{n}\right\}$ has polynomial growth if:

$$
(\exists d \in \mathbb{N})(\exists C>0)(\forall n \gg 0)\left(\left|a_{n}\right|<C n^{d}\right)
$$

and the minimal value of d making this true is the degree of the growth. Remark. $(\forall n \gg 0) P(n)$ is mathematical shorthand for:

$$
(\exists N \in \mathbb{N})(n>N \rightarrow P(n))
$$

Linear Growth is polynomial growth of degree 1.
Quadratic growth is polynomial growth of degree 2.
Example. Arithmetic sequences have linear growth, but so do more sporadic sequences, like:

$$
a_{n}=n+(-1)^{n} \text { or } b_{n}=(-1)^{n} n
$$

(E) $\left\{a_{n}\right\}$ has exponential growth if:

$$
(\exists r>0)\left(\exists C_{1}, C_{2}>0\right)(\forall n \gg 0)\left(C_{1} r^{n}<\left|a_{n}\right|<C_{2} r^{n}\right)
$$

and the single r making this true is the rate of the growth.
Examples. (a) The sequences $\left\{a r^{n}\right\}$ are exponential with rate r.
(b) Both the Fibonacci and Lucas sequences have exponential growth with growth rate ϕ.
Recall. From Calculus, we know that if $r>1$ and $d>0$, then:

$$
\lim _{n \rightarrow \infty} \frac{r^{n}}{n^{d}}=\infty
$$

(use l'Hopital's rule) so each exponential growth of rate $r>1$ beats all polynomial growth rates.

When $r<1$, the "growth" is called exponential decay.
Pseudo RRs. A pseudo-RR consists of recurrence relation functions:

$$
a_{n}=g_{n}\left(a_{n-1}, \ldots, a_{n-k}\right)
$$

with some (simple) dependence on n. These PRRs plus the first k terms of the sequence still determine the sequence.
Examples. (a) The sequence of perfect squares $1,4,9, \ldots$ has:

$$
a_{n}=a_{n-1}+2 n-1
$$

since $4=1+3,9=4+5$, etc. (see summations below).
(b) The factorial sequence $a_{n}=n$! is defined by:

$$
a_{1}=1 \text { and } a_{n}=n \cdot a_{n-1}
$$

The growth of this simple sequence beats all exponential growth rates!
Definition. Given a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of real numbers, let

$$
\left\{s_{n}\right\}_{n=1}^{\infty} ; \quad s_{n}=a_{1}+\cdots+a_{n}=\sum_{i=1}^{n} a_{i}
$$

be the sequence of partial sums.
Examples. (i) If $a_{n}=1$ is constant, then $s_{n}=n$ is arithmetic.
(ii) If $a_{n}=n$, then:

$$
s_{n}=1+2+\cdots+n=\frac{(n+1) n}{2}
$$

Proof. The sequence s_{n} has the PRR:

$$
s_{n}=s_{n-1}+n \text { and } s_{1}=1
$$

But the sequence $b_{n}=(n+1) n / 2$ also has $b_{1}=1$ and PRR:

$$
b_{n}-b_{n-1}=\frac{(n+1) n}{2}-\frac{n(n-1)}{2}=n
$$

so they are the same sequence!
Corollary. The growth of s_{n} is quadratic if $\left\{a_{n}\right\}$ is arithmetic.
Let $a_{n}=d(n-1)+a$. Then by examples (i) and (ii), we have:

$$
s_{n}=d \cdot \frac{n(n-1)}{2}+n a=\left(\frac{d}{2}\right) n^{2}+\left(\frac{2 a-d}{2}\right) n
$$

which is a quadratic polynomial in n.
Example. The sequence of perfect squares n^{2} is the sequence of partial sums for the arithmetic sequence with: $d=2$ and $2 a-d=0$ (so $a=1$). That is, the arithmetic sequence is $a_{n}=2(n-1)+1=2 n-1$ and:

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

Fifth Homework Assignment. §2.3. \#24,28,38,40. §2.4 \#8,10,12,32,36,46.

