
Math 2200-002/Discrete Mathematics

Sequences and Series

Let S be a set.

Defintion. A sequence of elements of S is a function f : N → S. If
f(1) = a1, f(2) = a2, ..., f(n) = an, then may write sequence as:

{an}∞n=1 or just {an}
which is unfortunate because a sequence is not a a set since the
elements of a sequence are ordered and may appear more than once.

Examples. (i) The sequence {a} is the constant sequence f(n) = a.

(ii) The sequence:

f(1) = Sunday, f(2) = Monday, ..., f(7) = Saturday, f(8) = Sunday, ...

is the days-of-the week sequence, which cycles, with f(n+ 7) = f(n).

Some Sequences of Real Numbers

(A) A sequence of real numbers {an} is arithmetic if:

an = d(n− 1) + a for some real numbers a and d

That is, an is the sequence:

a, a+ d, a+ 2d, · · ·
Some Familiar Arithmetic Sequences:

(i) The sequence of even numbers: 2, 4, 6, 8, ... (a = 2, d = 2).

(ii) The sequence of odd numbers: 1, 3, 5, 7, ... (a = 1, d = 2).

(iii) The sequence of negatives: −1,−2,−3, ... (a = −1, d = −1).

(B) A sequence of real numbers {an} is geometric if:

an = arn−1 for some real numbers a, r

(and we usually require that a 6= 0).

Some Familiar Geometric Sequences:

(i) Compound Interest: a = principal, r = 1 + interest rate

(ii) Half lives: a, 1
2
a, 1

4
a, 1

8
a, ...

(iii) Doubling: a, 2a, 4a, 8a, ...

Definition. A recurrence relation (RR) for {an} is a single! function:

an = g(an−1, ...., an−k)

expresssing an as a function of a the previous k terms of the sequence.
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Examples.

(i) An RR for the arithmetic sequence an = a+ (n− 1)d is:

g(an−1) = an−1 + d; i.e. g(x) = x+ d

(ii) An RR for the geometric sequence an = arn−1 is:

g(an−1) = ran−1; i.e. g(x) = rx

(iii) An RR for the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, ... is:

g(an−1, an−2) = an−1 + an−2; i.e. g(x, y) = x+ y

(this RR has k = 2, since it reaches back two terms).

Inductive Observation. If g(an−1, .., an−k) is an RR for the sequence
{an} that reaches back k terms, then the sequence an = f(n) can be
reconstructed from the function g and the first k terms of the sequence.

Example. (i) Arithmetic and geometric sequences are determined by
their RRs and the first term of the sequence.

(ii) The Fibonacci sequence requires the first two terms

a1 = 1, a2 = 1

and the RR g(an−1, an−2) = an−1 + an−2. A different two terms, e.g.

b1 = 1, b2 = 3

determine a different sequence with the same RR. In this case:

1, 3, 4, 7, 11, 18, ...

has a name. It is called the Lucas sequence.

An interesting (and sometimes hard) question is the following:

Question. How can we recover the function f(n) for a sequence from
the the RR function g(an−1, ..., gn−k) and the initial k terms a1, .., ak?

Example. The RR g(an−1) = an−1 + d and a1 = a give:

f(n) = a+ (n− 1)d for arithmetic sequences

Proposition. Let φ and ψ be the two roots of the quadratic relation:

x2 = x+ 1

That is, φ = (1+
√

5)/2 (the golden mean) and ψ = (1−
√

5)/2. Then:

an =
1√
5

(φn − ψn) for the Fibonacci sequence

and bn = φn + ψn for the Lucas sequence.
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This remarkable fact gives a rapid convergence:

an ∼ φn/
√

5 and bn ∼ φn

of the terms of the sequences which you should check on your calculator!

Proof. (Step 1.) The two geometric sequences:

{φn}∞n−1 and {ψn}∞n−1
both satisfy the Fibonacci (and Lucas) RR:

an = an−1 + an−2

since x2 = x + 1 implies that xn = xn−1 + xn−2 (multiplying by xn−2)
in both the cases x = φ and x = ψ.

(Step 2.) Any linear combination of the two geometric sequences:

sφn + tψn

also satisfies the Fibonacci RR. Thus the proposition follows once we
determine that the two sequences given by s = 1/

√
5, t = −1/

√
5 and

s = 1, t = 1 match the first two terms of the Fibonacci and Lucas
sequences, respectively. Using φ2 = φ+ 1 and ψ2 = ψ + 1, we have:

φ = (1 +
√

5)/2, ψ = (1−
√

5)/2, φ2 = (3 +
√

5)/2, ψ2 = (3−
√

5)/2

so
φ+ ψ = 1 and φ2 + ψ2 = 3 matches the Lucas sequence!

and
φ− ψ =

√
5 and φ2 − ψ2 =

√
5

matches
√

5 times Fibonacci. This proves the Proposition. �

Growth Rate is an important property of sequences:

(P) {an} has polynomial growth if:

(∃d ∈ N)(∃C > 0)(∀n >> 0)(|an| < Cnd)

and the minimal value of d making this true is the degree of the growth.

Remark. (∀n >> 0)P (n) is mathematical shorthand for:

(∃N ∈ N)(n > N → P (n))

Linear Growth is polynomial growth of degree 1.

Quadratic growth is polynomial growth of degree 2.

Example. Arithmetic sequences have linear growth, but so do more
sporadic sequences, like:

an = n+ (−1)n or bn = (−1)nn
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(E) {an} has exponential growth if:

(∃r > 0)(∃C1, C2 > 0)(∀n >> 0)(C1r
n < |an| < C2r

n)

and the single r making this true is the rate of the growth.

Examples. (a) The sequences {arn} are exponential with rate r.

(b) Both the Fibonacci and Lucas sequences have exponential growth
with growth rate φ.

Recall. From Calculus, we know that if r > 1 and d > 0, then:

lim
n→∞

rn

nd
=∞

(use l’Hopital’s rule) so each exponential growth of rate r > 1 beats all
polynomial growth rates.

When r < 1, the “growth” is called exponential decay.

Pseudo RRs. A pseudo-RR consists of recurrence relation functions:

an = gn(an−1, ..., an−k)

with some (simple) dependence on n. These PRRs plus the first k
terms of the sequence still determine the sequence.

Examples. (a) The sequence of perfect squares 1, 4, 9, ... has:

an = an−1 + 2n− 1

since 4 = 1 + 3, 9 = 4 + 5, etc. (see summations below).

(b) The factorial sequence an = n! is defined by:

a1 = 1 and an = n · an−1
The growth of this simple sequence beats all exponential growth rates!

Definition. Given a sequence {an}∞n=1 of real numbers, let

{sn}∞n=1; sn = a1 + · · ·+ an =
n∑

i=1

ai

be the sequence of partial sums.

Examples. (i) If an = 1 is constant, then sn = n is arithmetic.

(ii) If an = n, then:

sn = 1 + 2 + · · ·+ n =
(n+ 1)n

2
Proof. The sequence sn has the PRR:

sn = sn−1 + n and s1 = 1
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But the sequence bn = (n+ 1)n/2 also has b1 = 1 and PRR:

bn − bn−1 =
(n+ 1)n

2
− n(n− 1)

2
= n

so they are the same sequence! �

Corollary. The growth of sn is quadratic if {an} is arithmetic.

Let an = d(n− 1) + a. Then by examples (i) and (ii), we have:

sn = d · n(n− 1)

2
+ na =

(
d

2

)
n2 +

(
2a− d

2

)
n

which is a quadratic polynomial in n.

Example. The sequence of perfect squares n2 is the sequence of partial
sums for the arithmetic sequence with: d = 2 and 2a−d = 0 (so a = 1).
That is, the arithmetic sequence is an = 2(n− 1) + 1 = 2n− 1 and:

1 + 3 + 5 + · · ·+ (2n− 1) = n2

Fifth Homework Assignment. §2.3. #24,28,38,40. §2.4 #8,10,12,32,36,46.


