Math 2200-002/Discrete Mathematics

Sample Problems

I. Logic.

A. Convert the following (true) statements into logical propositions.

- There is no largest natural number.
- Every subset of the natural numbers other than the empty set has a smallest element.
- Every real number has an additive inverse.
- Some real number has no multiplicative inverse.
- There are infinitely many prime numbers.
- $\sqrt{2}$ is not a rational number.
- Every natural number greater than 1 is the product of finitely many prime numbers.
- Every prime greater than 2 is an odd number.
B. Negate the following using DeMorgan's Laws:
- $p \wedge \neg q$
- $p \rightarrow q$
- $p \leftrightarrow q$
- $(\forall x)(\exists y)(P(x) \rightarrow Q(y))$.
- $(\exists x)(\forall y)(P(x) \rightarrow Q(y))$
II. Definitions. Using logical propositions, carefully define:
- The intersection and union of sets A and B (in a universe U).
- The power set of a set A.
- The complement of a set A.
- Injectivity, surjectivity and bijectivity of functions.
- A sequence of integers.
- Arithmetic and geometric sequences of real numbers.
- A recurrence relation for a sequence.
- The Fibonacci and Lucas sequences.
- A composite number.
- The division algorithm.
- The operations mod and div.
- Congruence mod m.
- Addition and multiplication mod m.
- The gcd and lcm of natural numbers m and n.
III. Short Answers. Carefully describe the following, using complete sentences and logical propositions.
- The Cartesian product of A and B.
- The graph of a function $f: A \rightarrow B$.
- Polynomial and exponential growth of sequences.
- The Euclidean algorithm for finding the gcd.
- Bézout's Theorem
IV. Proofs. Write down complete proofs of the following, carefully explaining every step of the proof.
- If $|S|=n$, then $|\mathcal{P}(S)|=2^{n}$.
- $\sqrt{2}$ is not a rational number.
- There are infinitely many prime numbers.
- $1+3+5+\cdots+(2 n-1)=n^{2}$
- The nth Fibonacci number is $\left(\phi^{n}+\psi^{n}\right) / \sqrt{5}$, where ϕ and ψ are the two solutions to the equation $x^{2}=x+1$.
- If m and n are relatively prime and d is any integer, then there are integers a and b so that: $a m+b n=d$.
- $(p \rightarrow q) \leftrightarrow(\neg p \vee q) \leftrightarrow(\neg q \rightarrow \neg p)$

V. Some Problems.

- Find $\mathcal{P}(\{\emptyset, 0\})$.
- Show that for any two sets A and $B, \overline{A-B}=\bar{A} \cup B$.
- Solve the equation $13 a+43 b=1$.

