Math 2200-002/Discrete Mathematics

Sample Problems

I. Logic.

A. Convert the following (true) statements into logical propositions.

- There is no largest natural number.
- Every subset of the natural numbers other than the empty set has a smallest element.
- Every real number has an additive inverse.
- Some real number has no multiplicative inverse.
- There are infinitely many prime numbers.
- $\sqrt{2}$ is not a rational number.
- Every natural number greater than 1 is the product of finitely many prime numbers.
- Every prime greater than 2 is an odd number.
- **B.** Negate the following using DeMorgan's Laws:
 - $p \land \neg q$
 - $p \rightarrow q$
 - $\bullet \ p \leftrightarrow q$
 - $(\forall x)(\exists y)(P(x) \to Q(y)).$
 - $(\exists x)(\forall y)(P(x) \to Q(y))$
- II. Definitions. Using logical propositions, carefully define:
 - The intersection and union of sets A and B (in a universe U).
 - The power set of a set A.
 - The complement of a set A.
 - Injectivity, surjectivity and bijectivity of functions.
 - A sequence of integers.
 - Arithmetic and geometric sequences of real numbers.
 - A recurrence relation for a sequence.
 - The Fibonacci and Lucas sequences.
 - A composite number.
 - The division algorithm.
 - The operations mod and div.
 - Congruence mod m.
 - Addition and multiplication mod m.
 - The gcd and lcm of natural numbers m and n.

III. Short Answers. Carefully describe the following, using complete sentences and logical propositions.

- The Cartesian product of A and B.
- The graph of a function $f: A \to B$.

- Polynomial and exponential growth of sequences.
- The Euclidean algorithm for finding the gcd.
- Bézout's Theorem

IV. Proofs. Write down complete proofs of the following, carefully explaining every step of the proof.

- If |S| = n, then $|\mathcal{P}(S)| = 2^n$.
- $\sqrt{2}$ is not a rational number.
- There are infinitely many prime numbers.
- $1 + 3 + 5 + \dots + (2n 1) = n^2$
- The *n*th Fibonacci number is $(\phi^n + \psi^n)/\sqrt{5}$, where ϕ and ψ are the two solutions to the equation $x^2 = x + 1$.
- If m and n are relatively prime and d is any integer, then there are integers a and b so that: am + bn = d.
- $(p \to q) \leftrightarrow (\neg p \lor q) \leftrightarrow (\neg q \to \neg p)$
- V. Some Problems.
 - Find $\mathcal{P}(\{\emptyset, 0\})$.
 - Show that for any two sets A and B, $\overline{A-B} = \overline{A} \cup B$.
 - Solve the equation 13a + 43b = 1.