Math 2200-002/Discrete Mathematics

Combinatorics

Definition. (a) A sample space S is a set of equally likely outcomes.
(b) An event is a subset $E \subseteq S$ of the sample space.
(c) The probability of the event E is:

$$
p(E)=\frac{|E|}{|S|}
$$

Example. The probability of rolling a 7 with two die.

- S is the set of ordered pairs (i, j) with $1 \leq i \leq 6$ and $1 \leq j \leq 6$. (all the possible rolls of a pair of dice)
- E is the set $\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$. Thus:

$$
p(E)=\frac{|E|}{|S|}=\frac{6}{36}=\frac{1}{6}
$$

Features of Probabilities.

- $0 \leq p(E) \leq 1$.
- $p(\bar{E})=1-p(E)$ if \bar{E} is the complement of E in S.
(The probability of an event E not happening is $1-p(E)$)
- $p(E \cup F)=p(E)+p(F)-p(E \cap F)$ if E and F are two events.
(This follows from the inclusion-exclusion principle)
Example. The probability that a number chosen at random between 1 and 100 is divisible by 2 or 5 is:
$p($ divisible by 2$)+p($ divisible by 5$)-p($ divisible by 2 and 5$)$

$$
=\frac{1}{2}+\frac{1}{5}-\frac{1}{10}=\frac{3}{5}
$$

Instead of each outcome being equally likely (which is not always realistic), we can assign probabilities to elements of the sample space. That is, we give probabilities:

$$
0 \leq p(s) \leq 1 \text { to each element } s \in S
$$

such that:

$$
\sum_{s \in S} p(s)=1
$$

This is called a probability distribution. In this setting, if $E \subseteq S$ is an event, then:

$$
p(E)=\sum_{s \in E} p(s)
$$

Example. "Equally likely outcomes" is the uniform distribution:

$$
p(s)=\frac{1}{|S|} \text { for each } s \in S
$$

Example (Biased coin) Suppose a biased coin has probability p of landing heads and a probability q of landing tails with $p+q=1$. If the coin is flipped n times, then:
S is the space of ordered n-tuples of binary choices between heads and tails, which we represent with digits 1 (for heads) and 0 (for tails). Thus, for example, two flips of the coin has a space S of four outcomes:

$$
(0,0),(0,1),(1,0),(1,1)
$$

Each outcome has its own probability. In this $n=2$ example,

$$
p(0,0)=q^{2}, p(0,1)=q p, p(1,0)=p q \text { and } p(1,1)=p^{2}
$$

(and note that these add to $p^{2}+2 p q+q^{2}=(p+q)^{2}=1$)
If E is the event that r heads and $n-r$ tails are flipped, then:
$|E|=C(n, r)$ is the number of positions for r heads among the n flips

$$
\text { and } p(e)=p^{r} q^{n-r} \text { for each element } e \in E
$$

so putting these together:

$$
p(E)=\sum_{e \in E} p^{r} q^{n-r}=C(n, r) p^{r} q^{n-r}
$$

This Example is also known as a Bernoulli trial.
More Definitions. (a) A random variable is a function $X: S \rightarrow \mathbb{R}$.
(b) In the presence of a probability distribution, the expected value of a random variable X is:

$$
E(X)=\sum_{s \in S} p(s) X(s)=\sum_{r \in \mathbb{R}} p(X=r) r
$$

where $p(X=r)=\sum_{\{s \mid X(s)=r\}} p(s)$.
Example. Let S be the sample space of n flips of the biased coin and:

$$
X(s)=\text { the number of heads among the } n \text { flips }
$$

Then:

$$
E(X)=\sum_{r=0}^{n} C(n, r) p^{r} q^{n-r} \cdot r=n p
$$

using the value $p(X=r)=C(n, r) p^{r} q^{n-r}$ that we found above. (the surprising simplification of the sum is done in the book).

Definition. The variance of X with distribution $p(s)$ is:

$$
V(X)=\sum_{s \in S}(X(s)-E(X))^{2} p(s)
$$

and the standard deviation is:

$$
\sigma=\sqrt{V(X)}
$$

This can be formidable to compute by hand when S is large.
Proposition. Let $X^{2}: S \rightarrow \mathbb{R}$ be the function $X^{2}(s)=X(s)^{2}$. Then:

$$
V(X)=E\left(X^{2}\right)-E(X)^{2}
$$

i.e. the variance is the difference between the expected value of the square of the random variable and the square of the expected value.

Proof.

$$
\begin{gathered}
V(X)=\sum_{s \in S}(X(s)-E(X))^{2} p(s)= \\
=\sum_{s \in S} X^{2}(s) p(s)-2 E(X) X(s) p(x)+E(X)^{2} p(s) \\
=\sum_{s \in S} X^{2}(s) p(s)-2 E(X) \sum_{s \in S} X(s) p(s)+E(X)^{2} \sum_{s \in S} p(s) \\
=E\left(X^{2}\right)-2 E(X) E(X)+E(X)^{2}=E\left(X^{2}\right)-E(X)^{2}
\end{gathered}
$$

Suppose now that X and Y are two random variables on S. Then:
Proposition. $E(X+Y)=E(X)+E(Y)$.
Proof.

$$
\begin{gathered}
E(X+Y)=\sum_{s \in S}(X+Y)(s) p(s)=\sum_{s \in S}(X(s)+Y(s)) p(s)= \\
=\sum_{s \in S} X(s) p(s)+\sum_{s \in S} Y(s) p(s)=E(X)+E(Y)
\end{gathered}
$$

It is not, in general, true that $E(X Y)=E(X) E(Y)$, but:
Definition. Random variables X and Y are independent if:

$$
p\left(X=r_{1} \text { and } Y=r_{2}\right)=p\left(X=r_{1}\right) \cdot p\left(Y=r_{2}\right)
$$

for all pairs of real numbers $\left(r_{1}, r_{2}\right)$.
Examples. If a coin is tossed n times, then the random variables

$$
X_{i}=\left\{\begin{array}{l}
1 \text { if the } i \text { th flip is heads } \\
0 \text { if the } i \text { th flip is tails }
\end{array}\right.
$$

are independent. Similarly, if a pair of dice is rolled, then:

$$
X_{1}(i, j)=i \text { and } X_{2}(i, j)=j
$$

are independent random variables.
On the other hand,

$$
X(i, j)=i \text { and } Y(i, j)=i+j
$$

are not random variables, since, for example:

$$
p(X=1 \text { and } Y=8)=0
$$

but $p(X=1)=1 / 6$ and $p(Y=8)=5 / 36$.
Proposition. If X and Y are independent random variables, then:

$$
E(X Y)=E(X) E(Y)
$$

Proof.

$$
E(X Y)=\sum_{r} p(X Y=r) r=\sum_{r_{1}} \sum_{r_{2}} p\left(X=r_{1} \text { and } Y=r_{2}\right) r_{1} r_{2}=
$$

(summing over all the possible ways to factor $r=r_{1} r_{2}$)

$$
\begin{gathered}
=\sum_{r_{1}} \sum_{r_{2}} p\left(X=r_{1}\right) p\left(Y=r_{2}\right) r_{1} r_{2}=\left(\sum_{r_{1}} p\left(X=r_{1}\right) r_{1}\right)\left(\sum_{r_{2}} p\left(X=r_{2}\right) r_{2}\right) \\
=E(X) E(Y)
\end{gathered}
$$

Notice. It was crucial to the proof that X and Y be independent!
Proposition. If X and Y are independent random variables, then:

$$
V(X+Y)=V(X)+V(Y)
$$

Proof.

$$
\begin{gathered}
V(X+Y)=E\left((X+Y)^{2}\right)-E(X+Y)^{2}= \\
=E\left(X^{2}+2 X Y+Y^{2}\right)-\left(E(X)^{2}+2 E(X) E(Y)+E(Y)^{2}\right) \\
=\left(E\left(X^{2}\right)-E(X)^{2}\right)+2(E(X Y)-E(X) E(Y))+E\left(Y^{2}\right)-E(Y)^{2} \\
=V(X)+V(Y)
\end{gathered}
$$

(the middle terms vanishes by the previous proposition!).
Examples. (a) Flip a fair coin n times. Then each of the random variables X_{i} defined above satisfies:

$$
E\left(X_{i}\right)=\frac{1}{2} \text { and } V\left(X_{i}\right)=E\left(X_{i}^{2}\right)-E\left(X_{i}\right)^{2}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}
$$

Thus, the expected value of:

$$
X=X_{1}+\cdots X_{n}=\text { total number of heads }
$$

is $E(X)=n / 2$ and the variance is $V(X)=n / 4$.
(b) Roll a pair of dice and let $X_{1}(i, j)=i$ and $X_{2}(i, j)=j$. Then:

$$
E\left(X_{1}\right)=E\left(X_{2}\right)=\frac{1}{6}(1+2+3+4+5+6+7)=\frac{7}{2}
$$

and

$$
E\left(X_{1}^{2}\right)^{2}=E\left(X_{2}^{2}\right)=\frac{1}{6}(1+4+9+16+25+36)=\frac{91}{6}
$$

so

$$
V\left(X_{1}\right)=V\left(X_{2}\right)=\frac{91}{6}-\frac{49}{4}=\frac{35}{12}
$$

from which it follows that:

$$
E\left(X_{1}+X_{2}\right)=7 \text { and } V\left(X_{1}+X_{2}\right)=\frac{35}{6}
$$

and $\sigma \sim 2.4$.
Informal Rule. There is an informal rule for random variables, which is:

$$
p(|X-E(X)|<\sigma) \approx \frac{2}{3}
$$

and

$$
p(|X-E(X)|<2 \sigma) \approx 0.95
$$

If we try this out on the pair of dice, we get:

$$
p(|X-7|<2.4)=\frac{1}{36}(4+5+6+5+4)=\frac{24}{36}=\frac{2}{3}
$$

(the probability of rolling a $5,6,7,8$ or 9) and

$$
p(|X-7|<4.8)=1-\left(\frac{1}{36}(1+1)\right)=\frac{34}{36} \approx 0.94
$$

which is pretty much on the money for the informal rule!

Homework. (Due in class on Monday, December 2).

1. (2 points) What is the probability that a number chosen at random between 1 and 1000 is divisible by 7 or 11 or 13 ?
2. (4 points) Roll a pair of dodecahedral dice (12 sides). Then:

$$
S=\{(i, j) \mid 1 \leq i \leq 12 \text { and } 1 \leq j \leq 12\}
$$

Imitate the exercises above with $X_{1}(i, j)=i$ and $X_{2}(i, j)=j$. That is:
(a) Find $E\left(X_{i}\right)$ and $V\left(X_{i}\right)$
(b) Find $E(X), V(X)$ and $\sigma=\sqrt{V(X)}$ for $X=X_{1}+X_{2}$.
(c) Check the informal $2 / 3$ and 95% rules.
3. (4 points) Take a biased coin with p (heads) $=1 / 3$ and $p($ tails $)=2 / 3$ and flip it 10 times.
(a) What is $|S|$?

Let X be the random variable $X(s)=$ number of heads.
(b) Calculate $E(X)$ and $V(X)$ and $\sigma=\sqrt{V(X)}$.
(c) Compute: $p(|X-E(X)|)<\sigma$) and $p(|X-E(X)|)<2 \sigma$ and check that the informal rule sucks for biased coins. (The problem is with the probability distribution, which is skewed).
Hint: Use the fact that $X=X_{1}+\cdots+X_{10}$ is the sum of 10 independent random variables!

