Math 2200-002/Discrete Mathematics

First Midterm. Answer Key

1. (4 points each) Restate each of the following as a logical proposition.
(a) Every integer has an additive inverse.

$$
(\forall a \in \mathbb{Z})(\exists b \in \mathbb{Z})(a+b=0)
$$

(b) There is no largest natural number.

$$
\neg(\exists n \in \mathbb{N})(\forall m \in \mathbb{N})(n \geq m)
$$

(c) Each nonempty subset of \mathbb{N} has a smallest element.

$$
(\forall S \subseteq \mathbb{N})((S=\emptyset) \vee(\exists s \in S)(\forall t \in S)(s \leq t))
$$

(d) There is a natural number that divides all other natural numbers.

$$
(\exists n \in \mathbb{N})(\forall m \in \mathbb{N})(n \mid m)
$$

(e) $f(x)=x^{2}$ (with domain \mathbb{R}) is not an increasing function.

$$
\neg(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})\left((x<y) \rightarrow\left(x^{2} \leq y^{2}\right)\right)
$$

2. Demonstrate that the following are logically equivalent.
(a) (10 points) $(p \rightarrow q)$ and $(\neg q \rightarrow \neg p)$

$$
(p \rightarrow q) \equiv(\neg p \vee q) \text { and }(\neg q \rightarrow \neg p) \equiv \neg(\neg q) \vee \neg p \equiv q \vee \neg p
$$

so they are equivalent. (Or else use truth tables).
(b) (10 points) $((p \rightarrow \neg q) \wedge q)$ and $(\neg p \wedge q)$
$(p \rightarrow \neg q) \wedge q \equiv(\neg p \vee q) \wedge q \equiv(\neg p \wedge q) \vee(q \wedge \neg q) \equiv(\neg p \wedge q) \vee \mathbf{F} \equiv(\neg p \wedge q)$ (Or else use truth tables.)
3. (a) (10 points) Prove that there are infinitely many prime numbers.

Proof by Contradiction. If there are finitely many primes, then there is an $n \in \mathbb{N}$ and a set:

$$
S=\left\{p_{1}, \ldots, p_{n}\right\}
$$

consisting of all the primes. Then the number:

$$
N=p_{1} \cdot p_{2} \cdots p_{n}+1
$$

is not divisible by any of the primes in the set S. But N has a prime factorization:

$$
N=q_{1} \cdots q_{m}
$$

so q_{1} is a prime that divides N and is not in the set S. Contradiction.
(b) (10 points) Prove there are infinitely many composite numbers. Direct Proof. The set of even numbers bigger than 2:

$$
\{4,6,8, \ldots\}
$$

is an infinite set of composite numbers. Also, the set of powers of 2 :

$$
\{4,8,16, \ldots .\}
$$

is an infinite set of composite numbers. (There are lots of examples).
4. (a) (10 pts) Prove that if $3 \mid n^{2}$ then $3 \mid n$.

Proof by Contrapositive. Suppose 3 does not divide n.
Then there are two cases. Either:
(a) $n=3 k+1$ for some k or (b) $n=3 k+2$ for some k.

In case (a), we have

$$
n^{2}=(3 k+1)^{2}=9 k^{2}+6 k+1=3\left(3 k^{2}+2 k\right)+1
$$

so 3 does not divide n^{2}, and in case (b) we have

$$
n^{2}=(3 k+2)^{2}=9 k^{2}+12 k+4=3\left(3 k^{2}+4 k+1\right)+1
$$

so in that case, also, 3 does not divide n^{2}.
We conclude that if 3 does not divide n, then 3 does not divide n^{2}. This gives us the contrapositive: if 3 divides n^{2}, then 3 divides n.
(b) (10 points) Use (a) to prove that $\sqrt{3}$ is irrational.

Proof by Contradiction. Suppose $\sqrt{3}$ is rational, and write:

$$
\sqrt{3}=\frac{m}{n}
$$

in lowest terms, i.e. with $\operatorname{gcd}(m, n)=1$. Then:

$$
3=\frac{m^{2}}{n^{2}}
$$

and:
(1) $m^{2}=3 n^{2}$, so 3 divides m^{2}, so 3 divides m (using (a)).
(2) Let $m=3 k$ Then $9 k^{2}=(3 k)^{2}=3 n^{2}$ so:
(3) $n^{2}=3 k^{2}$, so 3 divides n (again using (a)).

We conclude that 3 divides m and n, contradicting $\operatorname{gcd}(m, n)=1$ and since every rational number can be put in lowest terms, we conclude that $\sqrt{3}$ is not a rational number.
5. (5 points each) Give examples of each of the following:
(a) An infinite subset of \mathbb{R} that is disjoint from \mathbb{Q}.

$$
\mathbb{R}-\mathbb{Q}
$$

or $\{\sqrt{2}, \sqrt{2}+1, \sqrt{2}+2, \ldots\}$ or $\{\sqrt{2}, 2 \sqrt{2}, 3 \sqrt{2}, \ldots\}$.
(b) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is nondecreasing but not one-to-one.

$$
f(x)=0 \text { the constant function }
$$

(c) The first 12 terms of a nonzero sequence satisfying:

$$
a_{n}=a_{n-1}-a_{n-2}
$$

Choose any first two terms and then run the recursion. For example:

$$
1,2,1,-1,-2,-1,1,2,1,-1,-2,-1
$$

(Fun fact: The sequence will always repeat after 6 terms)
(d) A triple of sets $S, \mathcal{P}(S), \mathcal{P}(\mathcal{P}(S))$.

$$
S=\emptyset, \mathcal{P}(S)=\{\emptyset\}, \mathcal{P}(\mathcal{P}(S))=\{\emptyset,\{\emptyset\}\}
$$

or else

$$
S=\{1\}, \mathcal{P}(S)=\{\emptyset,\{1\}\}, \mathcal{P}(\mathcal{P}(S))=\{\emptyset,\{\emptyset\},\{\{1\}\},\{\emptyset,\{1\}\}\}
$$

