Math 2200-002/Discrete Mathematics

Induction and Well-Ordering

Induction is a tool for proving logical propositions of the form:

$$
(\forall n \geq m) P(n)
$$

In simple induction, you prove the statement above in two stages:
(i) Prove the base case $P(m)$.
(ii) Prove the inductive step $(\forall k \geq m)(P(k) \rightarrow P(k+1))$.

The base case gets the induction started, and by the inductive step:

$$
P(m+1), P(m+2), \ldots . \text { are all true as well. }
$$

Example. Prove that for all $n \geq 1$,

$$
1+2+\cdots+n=\binom{n+1}{2}=\frac{(n+1) n}{2}
$$

Proof. We start with the base case $m=1$.
(i) $1=\binom{2}{2}$ is the base case.
(ii) If

$$
1+2+\cdots+k=\binom{k+1}{2}
$$

then

$$
\begin{gathered}
1+2+\cdots+k+(k+1)=\binom{k+1}{2}+(k+1)= \\
=\frac{(k+1) k}{2}+(k+1)=\frac{(k+1) k+(k+1) 2}{2}=\frac{(k+1)(k+2)}{2}=\binom{k+2}{2}
\end{gathered}
$$

This is the inductive step.
The starting point m can be any integer.
Example. Prove that for all finite sets $S,(|S|=n) \rightarrow\left(|\mathcal{P}(S)|=2^{n}\right)$.
Proof. We start with the base case $m=0$.
(i) If $|S|=0$, then $S=\emptyset$, so $\mathcal{P}(S)=\{\emptyset\}$, so $|\mathcal{P}(S)|=1$ and $1=2^{0}$.
(ii) For the inductive step, assume that $(|S|=k) \rightarrow\left(|\mathcal{P}(S)|=2^{k}\right)$.

Let T be a set with $k+1$ elements, choose $t \in T$ and let $S=T-\{t\}$. Then by assumption, $|\mathcal{P}(S)|=2^{k}$. But each subset $A \subset S$ determines two subsets of T, namely A itself and $A \cup\{t\}$. Taken all together, these exactly account for each of the subsets of T. Thus:

$$
|\mathcal{P}(T)|=2|\mathcal{P}(S)|=2 \cdot 2^{k}=2^{k+1}
$$

and the inductive step is established.

There is a variation on this, known as strong induction, in which:
(i) The base case $P(m)$ and
(ii) The strong inductive step

$$
(\forall k \geq m)((P(m) \wedge P(m+1) \wedge \cdots \wedge P(k)) \rightarrow P(k+1))
$$

together imply the result:

$$
(\forall n \geq m) P(n)
$$

This version of induction can be more useful than simple induction.
Example. Every natural number $n \geq 2$ is a product of prime numbers.
Proof. We use strong induction with base case $m=2$.
(i) $m=2$ is a prime, so it is a product of primes (namely itself).
(ii) Suppose 2, $3, \ldots, k$ are each products of primes, and consider $k+1$.

Then either:
(a) $k+1$ is a prime, in which case it is a product of primes, or
(b) $k+1$ is composite, in which case $k+1=a b$ and both a and b are in the range $2,3, \ldots, k$, so a and b are both products of primes, so their product is also a product of primes.

Both inductions are equivalent to the different-looking:
Well-Ordered Axiom. Let $\mathbb{Z}^{\geq m}=\{n \in \mathbb{Z} \mid n \geq m\}$ and $S \subseteq \mathbb{Z}^{\geq m}$. Then either:
(i) $S=\emptyset$ or
(ii) S has a smallest element.

Like the principles of induction, this is useful for proving things.
Example. (The Division Algorithm for \mathbb{Z}) Let $n \in \mathbb{Z}$ and $m \in \mathbb{N}$. Then there is an integer q such that:

$$
n=m q+r \text { and } 0 \leq r<m
$$

Proof. Let $S=\{n-m q \mid q \in \mathbb{Z}\} \cap \mathbb{Z} \geq 0$.
Then $S \neq \emptyset$ because $q<n / m$ implies $n-m q>n-m(n / m)=0$.
Therefore S has a smallest element, which we'll call r and note that:

$$
n=m q+r \text { for some integer } q, \text { by definition }
$$

But it must be the case that $0 \leq r<m$ because otherwise, $r-m \geq 0$ and then $r-m=n-m q-m=n-m(q+1) \in S$ would be a smaller element of the set S.

We are ready for the big theorem.

Theorem. Fix $m \in \mathbb{Z}$. Then the following are equivalent:
(a) The well-ordered axiom.
(b) Simple Induction
(c) Strong Induction

Proof. We will prove $(a) \rightarrow(b) \rightarrow(c) \rightarrow(a)$. First, we need to rephrase all these things as logical propositions.
(a) Well-ordered axiom. Let $S \subseteq \mathbb{Z}^{\geq m}$. Then:

$$
(S=\emptyset) \vee(\exists s \in S)(\forall t \in S)(t \geq s)
$$

(b) Simple induction. Let $P(n)$ be a propositional function. Then:

$$
P(m) \wedge(\forall k \geq m)(P(k) \rightarrow P(k+1)) \rightarrow(\forall n \geq m) P(n)
$$

This is unruly, so we'll simplify it using the two equivalences:

$$
p \rightarrow q \equiv \neg p \vee q \text { and } \neg(p \rightarrow q) \equiv p \wedge \neg q
$$

The first equivalence gives:

$$
\neg(P(m) \wedge(\forall k \geq m)(P(k) \rightarrow P(k+1)) \vee(\forall n \geq m) P(n)
$$

We use DeMorgan's laws and the second equivalence to get:

$$
\neg P(m) \vee(\exists k \geq m)(P(k) \wedge \neg P(k+1)) \vee(\forall n \geq m) P(n)
$$

This is the version of simple induction that we will use. (Note: This is three separate propositions with "or" operations)
(c) Strong Induction. Let $P(n)$ be a propositional function. Then:

$$
\neg P(m) \vee(\exists k \geq m)(P(m) \wedge \cdots \wedge P(k) \wedge \neg P(k+1)) \vee(\forall n \geq m) P(n)
$$

using the same equivalences as in simple induction.
Back to the proof.
$(\mathbf{a}) \rightarrow(\mathbf{b})$. Given a propositional function $P(n)$, let

$$
S=\{n \geq m \mid P(n) \text { is false }\}
$$

By the well-ordered axiom, one of three things is true of S :

- $S=\emptyset$ (in which case $P(n)$ is true for all $n \geq m$).
- $m \in S$, in which case $P(m)$ is false or
- $S \neq \emptyset$ and its smallest element s is larger than m. In that case:

$$
P(s-1) \text { is true and } P(s) \text { is false }
$$

If we let $k=s-1 \geq m$, then this is:

$$
(\exists k \geq m)(P(k) \wedge \neg P(k+1))
$$

These are exactly the three propositions of simple induction!
(b) \rightarrow (c). Let $P(n)$ be any proposition, and let:

$$
Q(n) \equiv P(m) \wedge \cdots \wedge P(n)
$$

for all $n \geq m$. Then simple induction for $Q(n)$ is:

$$
\neg Q(m) \vee(\exists k \geq m)(Q(k) \wedge \neg Q(k+1)) \vee(\forall n \geq m) Q(n)
$$

and full induction for $P(n)$ is:

$$
\neg P(m) \vee(\exists k \geq m)(P(m) \wedge \cdots \wedge P(k) \wedge \neg P(k+1)) \vee(\forall n \geq m) P(n)
$$

Since $P(m) \equiv Q(m)$ and $(\forall n \geq m) P(m) \equiv(\forall n \geq m) Q(m)$, we only have to compare the third propositions:

$$
Q(k) \wedge \neg Q(k+1) \text { with } P(m) \wedge \cdots \wedge P(k) \wedge \neg P(k+1)
$$

But $Q(k) \equiv P(m) \wedge \cdots \wedge P(k)$ and $Q(k+1)=Q(k) \wedge P(k+1)$, so this follows from:

$$
p \wedge \neg q \equiv p \wedge \neg(p \wedge q)
$$

which can be checked with a truth table. Thus simple induction for $Q(n)$ gives full induction for $P(n)$, and since $P(n)$ was arbitrary, it follows that simple induction implies full induction.
(c) \rightarrow (a) Suppose $S \subseteq \mathbb{Z}^{\geq n}$, and let:

$$
P(n)=\left\{\begin{array}{l}
\mathbf{T} \text { if } n \notin S \\
\mathbf{F} \text { if } n \in S
\end{array}\right.
$$

Then strong induction for $P(n)$ gives one of the following:

- $(\forall n \geq m) P(n)$ (in which case $S=\emptyset)$ or
- $\neg P(m)$ (so m is the smallest element of S) or
- $(\exists k \geq m)(P(m) \wedge \cdots \wedge P(k) \wedge \neg P(k+1))$ (so $k+1 \in S$ and $m, \ldots, k \notin S$, i.e. $k+1$ is the smallest element of S).

In other words, $S=\emptyset$ or S has a smallest element!
Homework. (Each problem is worth two points).

1. Prove by simple induction that $2+4+6+\cdots+2 n=(n+1) n$.
2. Prove by simple induction that $2+4+8+\cdots+2^{n}=2^{n+1}-2$.
3. Find all the postage amounts you can make with 4 and 7 cent stamps, and prove your answer with induction.
4. Do Problem 36 on Page 344 ($\S 5.2$) of the book.
5. A subset $A \subseteq \mathbb{R}$ is well-ordered if every $S \subseteq A$ is either empty or else has a smallest element. Which of the following sets is well-ordered?
(a) $\mathbb{Z}^{\geq-1}$
(b) $\mathbb{Z}^{\leq 0}$
(c) $\mathbb{Q}^{\geq 0}$
(d) $\left\{\left.1-\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$
(e) $\left\{\left.m-\frac{1}{n} \right\rvert\, m, n \in \mathbb{N}\right\}$
