Math 2200-002/Discrete Mathematics

Euclid's Algorithm with Enhancement

Given natural numbers m and n,
Definition. The greatest common divisor of m and n, denoted

$$
\operatorname{gcd}(m n, n)
$$

is the largest natural number d such that $d \mid m$ and $d \mid n$.
Example. If $m \mid n$, then m is itself the gcd of m and n.
Definition. m and n are relatively prime if $\operatorname{gcd}(m, n)=1$.
Note. If p is a prime number, then every natural number less than p is relatively prime to p. More generally, if n is any natural number, then either $p \mid n$ or else p and n are relatively prime.
Euclid's Algorithm is the following efficient method for finding $\operatorname{gcd}(m, n)$.

1. Initialize. Set $x:=m$ and $y:=n$ (x and y will be variables).
2. Check. If $x \mid y$, then return the value x. Otherwise.
3. Reset. Solve $y=x q+r$ and reset $y:=x$ and $x:=r$.
4. Repeat. Go back to 2.

Remark. The algorithm return the gcd because at every stage,

$$
\operatorname{gcd}(m, n)=\operatorname{gcd}(x, y)
$$

The Enhanced Algorithm also solves the equation:

$$
a m+b n=g c d(m, n)
$$

with inteegers a and b. The trick is to keep track of two equations:

$$
x=a m+b n \text { and } y=c m+d n
$$

at every stage of the algorithm. We will do this with a 2×2 matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

that is updated at each stage. At the end, we read off:

$$
\operatorname{gcd}(m, n)=x=a m+b n \text { from the top row of the matrix }
$$

Enhanced Euclid. Given natural numbers m and n :

1. Initialize. Set $x:=m, y:=n$ and:

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

2. Check. If $x \mid y$, return $x=a m+b n$ from the matrix A. Otherwise:
3. Reset. Solve $y=x q+r$ and reset $y:=x, x:=r$ and:

$$
A:=\left[\begin{array}{rr}
-q & 1 \\
1 & 0
\end{array}\right] \cdot A
$$

4. Repeat. Go back to 2.

Example. Solve $a(23)+b(43)=1$.
Set $x=23, y=43$ and $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
Solve $43=23(1)+20$.
Reset $x=20, y=23$ and $A=\left[\begin{array}{rr}-1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{rr}-1 & 1 \\ 1 & 0\end{array}\right]$.
Solve $23=20(1)+3$.
Reset $x=3, y=20$ and $A=\left[\begin{array}{rr}-1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{rr}-1 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{rr}2 & -1 \\ -1 & 1\end{array}\right]$.
Solve $20=3(6)+2$.
Reset $x=2, y=3$ and $A=\left[\begin{array}{rr}-6 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{rr}2 & -1 \\ -1 & 1\end{array}\right]=\left[\begin{array}{rr}-13 & 7 \\ 2 & -1\end{array}\right]$.
Solve $3=2(1)+1$.
Reset $x=1, y=2$ and $A=\left[\begin{array}{rr}-1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{rr}-13 & 7 \\ 2 & -1\end{array}\right]=\left[\begin{array}{rr}15 & -8 \\ -13 & 7\end{array}\right]$.
Since 1 divides 2, return:

$$
1=(15)(23)+(-8)(43)
$$

Application. Consider the multiplication tables $\bmod 7$ and $\bmod 6$.

${ }^{7}$	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

${ }^{\circ}$	1	2	3	4	5
1	1	2	3	4	5
2	2	4	0	2	4
3	3	0	3	0	3
4	4	2	0	4	2
5	5	4	3	2	1

Note that mod 7 , every row has exactly one 1 and no zeroes. This is because 7 is a prime, and:

Application. If $\operatorname{gcd}(m, n)=1$, then the equation:

$$
a m+b n=1
$$

solves:

$$
a m \equiv 1(\bmod n)
$$

which means that a and m are reciprocals in arithmetic mod n.
Example. Since $(15)(23)+(-8)(43)=1$, we have:

$$
(15)(23) \equiv 1(\bmod 43)
$$

so 15 and 23 are reciprocals mod 43.
Corollary. If p is a prime, then $\bmod p$ every number in $\{0,1, \ldots, p-1\}$ other than 0 has a reciprocal.
Corollary. If p is a prime and $a \neq 0$, then every "linear equation"

$$
a x \equiv b(\bmod p)
$$

has a solution.
Proof. Multiply both sides by the reciprocal of a.
Proposition. If p is a prime, and $a \neq 0$ then the solution to:

$$
a x \equiv b(\bmod p)
$$

is unique.
Proof. Suppose $a x_{1} \equiv b$ and $a x_{2} \equiv b$. Then:

$$
a\left(x_{1}-x_{2}\right) \equiv 0(\bmod p)
$$

Multiplying both sides by the reciprocal of a, we get $x_{1}-x_{2} \equiv 0(\bmod p)$, which says that x_{1} and x_{2} are the same numbers $\bmod p$.

Homework. Solve the following with integers a and b (using Euclid).

1. $45 a+57 b=3$.
2. $48 a+58 b=2$.
3. $49 a+60 b=1$.

Solve the following linear equations.
4. $49 a \equiv 1(\bmod 60)$.
5. $49 a \equiv 11(\bmod 60)$.
6. $48 a \equiv 20(\bmod 58)$.
7. If $3 a \equiv b(\bmod 6)$ has a solution $(\bmod 6)$ and $b \neq 0$, then how many different solutions does it have?
8. Same as 7. for $2 a \equiv b(\bmod 6)$ and $4 a \equiv b(\bmod 6)$.
9. If $\operatorname{gcd}(m, n)=d$ and $b \neq 0$, and if $a m \equiv b(\bmod n)$ has a solution, then how many different solutions does it have?
10. Find a pair (a, b) of numbers mod 60 that simultaneously solve:

$$
8 a+3 b \equiv 1(\bmod 60) \text { and } 5 a+8 b \equiv 1(\bmod 60)
$$

Hint: The inverse of a 2×2 matrix is given by:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Is this the only solution?

