Math 2200-002/Discrete Mathematics

Euclid's Algorithm with Enhancement

Given natural numbers m and n,

Definition. The greatest common divisor of m and n, denoted

gcd(mn, n)

is the largest natural number d such that d|m and d|n.

Example. If m|n, then m is itself the gcd of m and n.

Definition. *m* and *n* are relatively prime if gcd(m, n) = 1.

Note. If p is a prime number, then **every** natural number less than p is relatively prime to p. More generally, if n is any natural number, then either p|n or else p and n are relatively prime.

Euclid's Algorithm is the following efficient method for finding gcd(m, n).

- **1. Initialize.** Set x := m and y := n (x and y will be variables).
- **2.** Check. If x|y, then return the value x. Otherwise.
- **3. Reset.** Solve y = xq + r and reset y := x and x := r.
- 4. Repeat. Go back to 2.

Remark. The algorithm return the gcd because at every stage,

$$gcd(m,n) = gcd(x,y)$$

The Enhanced Algorithm also solves the equation:

$$am + bn = gcd(m, n)$$

with integers a and b. The trick is to keep track of **two** equations:

x = am + bn and y = cm + dn

at every stage of the algorithm. We will do this with a 2×2 matrix

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

that is updated at each stage. At the end, we read off:

gcd(m,n) = x = am + bn from the top row of the matrix

Enhanced Euclid. Given natural numbers m and n:

1. Initialize. Set x := m, y := n and:

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

- **2.** Check. If x|y, return x = am + bn from the matrix A. Otherwise:
- **3. Reset.** Solve y = xq + r and reset y := x, x := r and:

$$A := \left[\begin{array}{cc} -q & 1\\ 1 & 0 \end{array} \right] \cdot A$$

4. Repeat. Go back to 2.

Example. Solve a(23) + b(43) = 1. Set x = 23, y = 43 and $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Solve 43 = 23(1) + 20. Reset x = 20, y = 23 and $A = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$. Solve 23 = 20(1) + 3. Reset x = 3, y = 20 and $A = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$. Solve 20 = 3(6) + 2. Reset x = 2, y = 3 and $A = \begin{bmatrix} -6 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -13 & 7 \\ 2 & -1 \end{bmatrix}$. Solve 3 = 2(1) + 1. Reset x = 1, y = 2 and $A = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -13 & 7 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 15 & -8 \\ -13 & 7 \end{bmatrix}$. Since 1 divides 2, return:

$$1 = (15)(23) + (-8)(43)$$

Application. Consider the multiplication tables mod 7 and mod 6.

•7	1		3	4	5	6
1	1	2	3	4	5	6
2	2	4	-		3	5
3	3	6	2	5	1	4
4	4	1	5			3
5	5	3	1	6		2
6	6	5	4	3	2	1

·6	1	2	3	4	5
1	1	2	3	4	5
2	2	4	0	2	4
3	3	0	3	0	3
4	4	2	0	4	2
5	5	4	3	2	1

Note that mod 7, every row has exactly one 1 and no zeroes. This is because 7 is a prime, and:

Application. If gcd(m, n) = 1, then the equation:

$$am + bn = 1$$

solves:

$$am \equiv 1 \pmod{n}$$

which means that a and m are **reciprocals** in arithmetic mod n. **Example.** Since (15)(23) + (-8)(43) = 1, we have:

(17)(22) = 1 (-142)

 $(15)(23) \equiv 1 \pmod{43}$

so 15 and 23 are reciprocals mod 43.

Corollary. If p is a prime, then mod p every number in $\{0, 1, ..., p-1\}$ other than 0 has a reciprocal.

Corollary. If p is a prime and $a \neq 0$, then every "linear equation"

$$ax \equiv b \pmod{p}$$

has a solution.

Proof. Multiply both sides by the reciprocal of *a*.

Proposition. If p is a prime, and $a \neq 0$ then the solution to:

$$ax \equiv b \pmod{p}$$

is unique.

Proof. Suppose $ax_1 \equiv b$ and $ax_2 \equiv b$. Then:

$$a(x_1 - x_2) \equiv 0 \pmod{p}$$

Multiplying both sides by the reciprocal of a, we get $x_1 - x_2 \equiv 0 \pmod{p}$, which says that x_1 and x_2 are the same numbers mod p.

Homework. Solve the following with integers a and b (using Euclid).

- 1. 45a + 57b = 3.
- **2.** 48a + 58b = 2.
- **3.** 49a + 60b = 1.

Solve the following linear equations.

- **4.** $49a \equiv 1 \pmod{60}$.
- **5.** $49a \equiv 11 \pmod{60}$.
- **6.** $48a \equiv 20 \pmod{58}$.

7. If $3a \equiv b \pmod{6}$ has a solution (mod 6) and $b \neq 0$, then how many **different** solutions does it have?

8. Same as 7. for $2a \equiv b \pmod{6}$ and $4a \equiv b \pmod{6}$.

9. If gcd(m, n) = d and $b \neq 0$, and if $am \equiv b \pmod{n}$ has a solution, then how many different solutions does it have?

10. Find a pair (a, b) of numbers mod 60 that simultaneously solve:

 $8a + 3b \equiv 1 \pmod{60}$ and $5a + 8b \equiv 1 \pmod{60}$

Hint: The inverse of a 2×2 matrix is given by:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Is this the **only** solution?