
preliminary draft 01 Nov 1993 8:23 preliminary draft 01 Nov 1993 8:23

TUGboat, Volume 0 (2001), No. 0 preliminary draft, 12 Nov 2004 17:27 1001

Ideas for NTS—An Extended TEX
Implementation

Nelson H. F. Beebe

Contents

1 Introduction 1001
2 Previous work 1001
3 My wish list 1002

3.1 Implementation limits 1002
3.2 Text shapes 1003
3.3 Improved control of macro

expansion 1003
3.4 Modules and name spaces 1004
3.5 Dictionaries 1005
3.6 Floating-point arithmetic 1005
3.7 Overflow detection 1007
3.8 64-bit arithmetic 1007
3.9 Absolute page positioning 1007
3.10 Expression evaluation 1007
3.11 Hooks 1007
3.12 Low-level input/output primitives 1008
3.13 Input and output translation tables 1008
3.14 More than 9 parameters 1008
3.15 Arrays 1008
3.16 Register limits 1009
3.17 String primitives 1009
3.18 Regular expressions 1009
3.19 16-bit and 32-bit character sets and

fonts 1010
3.20 Switching between TEX and NTS 1010
3.21 Memory allocation and deallocation 1010
3.22 Function \return 1010
3.23 Group \exit 1010
3.24 Characters with property lists 1010
3.25 Dynamic loading and unloading of

hyphenation tables 1011
3.26 Memory \dump/\restore 1011
3.27 Font scaling and other font

attributes 1011
3.28 Font rotation 1011
3.29 Fonts and rules with grey scale, color, and

pattern fill 1011
3.30 Line cap styles for rules 1011
3.31 Clipping 1011
3.32 Job file extension 1012
3.33 Usage profiling 1012
3.34 Word boundary markers 1012
3.35 Elimination of INITEX 1013

4 LATEX: the future 1013
4.1 LATEX: global vs. local counters and

lengths 1013
4.2 LATEX: sample input documents 1013
4.3 LATEX: minor edit numbers 1013

4.4 LATEX: distinct option and style file
extensions 1013

4.5 LATEX: all options have corresponding
file 1013

4.6 LATEX: paper names and page
dimensions 1014

4.7 LATEX: Font scaling in picture
mode 1014

4.8 LATEX: Additional Float placement
options 1014

4.9 LATEX: \path macro 1014
References 1015

List of Tables

1 Common paper names and sizes 1015

1 Introduction

With the completion of the TEX project, Donald
Knuth decreed that TEX and METAFONT are com-
plete [26], and will not be developed further by him,
other than fixing increasingly rare bugs. Further-
more, any future systems based on these programs
must be called by different names.

Nevertheless, wide experience with TEX up to
its most recent incarnation, version 3, has produced
numerous requests for enhancements.

At the instigation of Joachim Lammarsch and
others, a cooperative effort has begun to consider the
design of a system that might someday succeed TEX;
the working name chosen is New Typesetting Sys-
tem (NTS). This proposed logo recognizes its TEX
ancestry, and I suggest that it could be pronounced
‘nits’, which are laid by gnats on gnus, though some
may prefer the softer sound ‘ehnts’, which is close
to ‘ants’ and preserves the insect traditions of the
field.1

2 Previous work

One of the first published commentaries on the de-
ficiencies of TEX is the extensive analysis by Mittel-
bach [30].

The present author responded to Knuth’s final
words in [12].

Adams has documented deficiencies of the TEX/
PostScript/graphics interface [1].

Vulis has suggested enhancements to TEX for
support of scalable fonts [42, 43], and provided
a working implementation, called Vector TEX, or
VTEX, that is well-documented in a book [44].

Asher [8] documents the Type & Set system
which is used by the publisher Current Science for

1 Book worms sometimes discover book lice in
old texts.

preliminary draft 01 Nov 1993 8:23 preliminary draft 01 Nov 1993 8:23

1002 preliminary draft, 12 Nov 2004 17:27 TUGboat, Volume 0 (2001), No. 0

the production of 86 journals. It uses a front-end
processor to convert word-processor input into TEX
markup, and modifies TEX’s back-end DVI output.

Clark questions the advisability of extending
TEX [17].

Taylor comments on what might follow TEX [39,
41].

Barr [9] documents shortcomings of TEX for the
typesetting of particular areas of mathematics.

Raman [35] considers the problem of typeset-
ting mathematics for sight-impaired users. Perhaps
extensions to TEX could be helpful in this effort.

Semenzato and Wang [36] propose a more pow-
erful front-end programming language interface to
TEX.

Knuth and MacKay describe TEX--XET [25], a
modification of TEX for typesetting of bi-directional
text, such as English mixed with Arabic or Hebrew.
This requires extensions to the TEX DVI file format,
which in turn requires support from DVI drivers.
Breitenlohner (????) produced a post-processing fil-
ter, dvidvi, to convert such extended DVI files to
normal ones in order to avoid the need for driver
extensions.

Becker and Berry [11] demonstrate an extension
to troff for tri-directional typesetting (e.g. Chinese,
Arabic, and English), and comment on the implica-
tions of this for TEX. They report that their ex-
tensions to troff are incapable of handling quad-
directional typesetting, such as might occur if Mon-
golian, which is read in columns from left to right,
were added to a tri-directional document.

Srouji and Berry [38] consider the problem of
left-justification of Arabic by elongation of letter
forms. Their implementation is based on troff, and
they describe why TEX is not capable of this.

Plaice [33] describes an extension of TEX called
Ω. Two of its important features are the increase
in the number of fonts, ligatures, and registers, and
support for 16-bit character sets.

Computer language design should always be
done with a solid understanding of the issues, which
is best gained through a study of the history of pro-
gramming languages. I urge the NTS design team to
review the two History of Programming Language
Conference proceedings [23, 45, 24] before starting.

3 My wish list

At the TUG’93 Conference (July 26–30, 1993) at As-
ton University, Birmingham, UK, Philip Taylor de-
scribed the current status of the NTS project which
he is most capably coordinating and leading [40]. He
stated at the outset that because of the widespread
use of TEX, both as a means of typesetting text, and

as a means of communications of material, particu-
lar mathematics, in the limited character sets avail-
able on current computers, that it was important for
NTS to be a superset of TEX, but acting exactly as
TEX, until asked to provide the NTS extensions.

In a July 13, 1992, posting to the NTS-L
electronic mail discussion list, Richard Palais ar-
gued forcefully for preservation of compatibility with
TEX:

. . . every year the American Mathematical
Society not only publishes many tens of thou-
sands of pages of books and primary math-
ematical journals in TEX, it also publishes
more tens of thousands of pages of Mathe-
matical Reviews (MR). The cost of producing
just one year of MR is well in excess of five
million dollars, and all of MR going back to
1959 (about one million records) is stored on-
line in TEX format in the MathSci database.
In making proposals for extensions to TEX, it is

therefore important to distinguish between features
that can be added, perhaps with considerable diffi-
culty, by TEX macros, and features that will require
fundamental changes to TEX itself.

The wish list that follows is my contribution to
the collection of ideas about what might be usefully
added to a new system that is derived from TEX.
The wish list is arranged as a series of independent
subsections, in no particular order.

3.1 Implementation limits

The history of computing has repeatedly shown the
dangers of designing hardware and software to the
limits of current technology.

Patterson and Hennessy [32] document numer-
ous examples; on the subject of memory, they quote
Bell and Strecker (p. 481):

There is only one mistake that can be made
in computer design that is difficult to re-
cover from—not having enough address bits
for memory addressing and memory manage-
ment. The PDP-11 followed the unbroken
tradition of nearly every known computer.

They then go on to observe:
A partial list of successful machines that
eventually starved to death for lack of address
bits includes the PDP-8, PDP-10, PDP-11,
Intel 8080, Intel 8086, Intel 80186, AMI
6502, Zilog Z80, Cray 1, and Cray X-MP.

The year 1992 saw the introduction of 64-bit ad-
dress spaces in new architectures from DEC and
MIPS/SGI. Hewlett-Packard, IBM, and Sun have
announced plans to move to 64-bit architectures by

preliminary draft 01 Nov 1993 8:23 preliminary draft 01 Nov 1993 8:23

TUGboat, Volume 0 (2001), No. 0 preliminary draft, 12 Nov 2004 17:27 1003

1994 or 1995. At the substantial data rate of 100
MB/sec, it will take about 5000 years to write 264

bytes of memory, so it looks like the address-space
limitation will finally be laid to reset.

TEX was created before
• personal computers and workstations,
• bitmapped graphics displays,
• cheap memory and disk,
• fast RISC processors,
• laser printers,
• graphics standards,
• standard floating-point arithmetic,
• PostScript,
• SGML.

Some of these changes are dramatic: since TEX was
conceived, CPU performance has increased by two
orders of magnitude, and disk and memory costs
have fallen by the same factor.

TEX’s birth year was a time where high-end
computer-based typesetting was usually based on
optically-scaled fonts, with only horizontal and ver-
tical orientations of text and rules, no graphics sup-
port other than by manual paste-up, and no color
without preparation of color separations.

When the initial SAIL-language version of TEX
was rewritten to produce the current implementa-
tion, Knuth chose Pascal as the target language for
portability, and further restricted the Pascal used in
TEX and METAFONT to avoid features that would
inhibit translation to other languages (e.g. nested
procedures), or were unevenly implemented (e.g. the
Pascal memory deallocator, dispose, was often a
dummy routine, so dynamic memory could never be
reused), or were poorly supported by the language
(notably, character strings).

These limitations (which were quite reasonable
at the time) required Knuth to go to great trouble in
programming TEX, and in the interests of memory
economizations, hard-to-change decisions were made
by allocating table sizes in fixed numbers of bits, and
memory was handled by private code that used ar-
rays of fixed size set at compile time. Consequently,
one of the commonest errors met by large applica-
tions is the dreaded TeX capacity exceeded mes-
sage, and inordinate amounts of programmer time
have been expended in trying to work around limi-
tations of TEX table sizes, and limits on the number
of fonts, font families, and registers.

While some implementations of TEX provide
for run-time setting of table sizes (a valid system-
dependent extension), none that I know of can dy-
namically expand tables that overflow, and none can

remove the limits imposed by allocation of short bit-
fields to hold table sizes, such as the limits to 16 font
families, 256 registers, and 256-character fonts.

Modern implementation languages provide re-
liable support for dynamic memory allocation, and
with careful encapsulation of table access, it is pos-
sible to detect table overflow and provide for dy-
namic enlargement. This has the serendipitous fea-
ture that small jobs then have only small memory
requirements, and large jobs never run out of mem-
ory until system memory resources are completely
exhausted.

I therefore conclude that NTS should remove
artificial limitations on table sizes to the greatest
extent possible.

3.2 Text shapes

With the \hang, \hangafter, and \hangindent
commands, TEX provides for typesetting a para-
graph in two blocks with different line widths. With
the more general \parshape command, it supports
typesetting of a paragraph in a single region of ar-
bitrary shape. The problem is that the shape is
restricted to the paragraph, and without tricks like
separating paragraphs with {\par},2 the shape is
forgotten at the start of the next paragraph.

NTS should generalize this further, allowing the
shape to contain multiple paragraphs. Although
non-rectangular text shapes are uncommon in most
applications, they are frequently required in adver-
tising and magazine typesetting.

The generalization could be through a new com-
mand called \textshape, with \parshape retaining
its TEX meaning.

3.3 Improved control of macro expansion

Programming languages with macro languages al-
ways raise the issue of the timing of macro expan-
sion. TEX deals with this in a limited way by pro-
viding \edef to force expansion at macro definition
time, and \noexpand to suppress expansion. The
trouble with the latter is that once \noexpand itself
is expanded, it is removed from the input stream, so
that if the text is subsequently rescanned, the macro
that followed \noexpand will be expanded. LATEX
tries to deal with this by introducing the \protect

2 This curious trick causes the paragraph shape
to be discarded inside the group by the actions asso-
ciated with \par, then restored by the normal end-
of-group actions.

preliminary draft 01 Nov 1993 8:23 preliminary draft 01 Nov 1993 8:23

1004 preliminary draft, 12 Nov 2004 17:27 TUGboat, Volume 0 (2001), No. 0

macro which is redefined according to context to val-
ues like \noexpand \noexpand \noexpand and \no-
expand \protect \noexpand; each additional \no-
expand macro accounts for one more level of expan-
sion.

It seems that it would be useful to have a pair of
commands, \neverexpand to (almost) permanently
protect a following macro from expansion, and \ex-
pandall to expand all macros in its following braced
argument, including those protected by \neverex-
pand. Protected macros could then pass through
an arbitrary number of scans until the point that
expansion was really needed.

3.4 Modules and name spaces

Modern programming languages such as Ada [5],
Modula-2 [46], and Fortran 90 [7] allow information
hiding to a greater degree than older languages such
as Fortran and C by introducing the notion of pack-
ages, or modules. These provide restricted contain-
ers for identifiers that hide them from other code.
Some of the identifiers can be permanently hidden
by declaring them to be private, and the others can
be made publicly visible, but only to code that ex-
plicitly requests their importation. Some languages
even provide for access permissions, so that public
variables can be made read-only or write-only out-
side their use in the package. A name that occurs
in two or more packages that are imported by the
same piece of code can be disambiguated implicitly
by context of use or in the case of functions and
procedures, by argument types, or disambiguated
explicitly by qualifying the name with a package-
name prefix.

Without packages, programmers of languages
like Lisp, Pascal, C, and TEX, are forced to adopt
variable-naming conventions that explicitly incorpo-
rate package names as a prefix or suffix, or special
characters that are not normally used by ordinary
applications (witness the extensive use of the ‘@’
character in TEX macro packages in internal macro
names). The trouble with these schemes is that they
reduce readability, and they do not really provide
protection against accidental reuse of the name.

Like TEX and METAFONT, the UNIX operating
system kernel was originally a monolithic program
with a single global name space that grew to the
point where it was very difficult to maintain and ex-
tend. Curiously, at the time of TEX’s initial design,
all three programs were about the same size. The
introduction of network support and a desire for en-
hanced portability have resulted in more recent ver-
sions of UNIX adopting a micro-kernel architecture,
with the program being split into several indepen-

dent pieces that communicate through well-defined
interfaces. A similar redesign of IBM’s OS/2 is in
progress. Packages and modules are important tools
for reducing the complexity of large programs.

I would very much like to have a package facil-
ity in NTS. One possible syntax would be to have
package name declaration and use like
\newpackage \PictureMode
\beginPictureMode
...
\def \put (#1,#2)#3{...}
...
\endPictureMode

with unqualified use in a group like
{

\with \PictureMode
...
\put(0,0){...}
...

}

or in an environment like
\beginPictureMode
...
\put(10,20){...}
...
\endPictureMode

and qualified use like
\PictureMode.put(10,20){...}

In a package definition, all names would by de-
fault be visible if the package were subsequently se-
lected, unless the definition contained explicit re-
strictions like
\private \internalput
\private \internalmultiput

to restrict visibility of selected identifiers.
In the presence of declarations like

\export \put
\export \multiput

no names declared in the package would be visible
outside the package, other than those explicitly ex-
ported.

Restricted visibility of names in a package could
be obtained by syntax like
\beginPictureMode
\import \put
\put(10,20){...}
\endPictureMode

The presence of \import would immediately restrict
visibility of names in the package to just those given
on \import commands.

preliminary draft 01 Nov 1993 8:23 preliminary draft 01 Nov 1993 8:23

TUGboat, Volume 0 (2001), No. 0 preliminary draft, 12 Nov 2004 17:27 1005

One could include access permissions for names
by declarations like
\readonly \x
\writeonly \n

and packages could be made unmodifiable by a spe-
cial declaration as in this example:
\beginPictureMode
\restrict
\def \put (#1,#2)#3{...}
\endPictureMode

\restrict would prevent further modifications to
existing macros defined in the package, a feature
that would improve robustness of large packages like
LATEX and AMS-TEX. New macros could still be
added to the package by users, but those macros
would also be restricted.

It appears that a package facility could be intro-
duced without compromising existing documents,
because the \newpackage macro declares the follow-
ing name to be of package type, with a correspond-
ing \beginxxx and \endxxx environment. Subse-
quent appearance of the package name followed by
a dot would unambiguously indicate qualified use of
the following name.

3.5 Dictionaries

The PostScript language introduces the interesting
concept of dictionaries, and a dictionary stack. Most
conventional programming languages have a hier-
archy of name spaces, including at least some of
these: block, procedure or function, file, package (or
module), and world. Except for packages, these are
strictly nested inside one another, and a procedure
cannot refer to a local variable of another procedure.

PostScript dictionaries (called symbol tables in
other languages) provide a more general model of
name space control. The idea is that the name
space can itself have a name, and that name spaces
can be explicitly selected by pushing the names onto
a dictionary stack which is searched in order from
top (last in) to bottom (first in). The anonymous
block name scope provided in other languages can
be obtained inside save/restore pairs, very much
like TEX braces. Named scopes like functions, files,
packages, and world, are provided by named dictio-
naries. However, entering a PostScript procedure
does not automatically select a new name scope like
procedure entry does in most other languages; in-
stead, the programmer can explicitly control the
name scope by pushing a new dictionary with begin
dictname, and later popping it with end. Unlike
save/restore, dictionary entries are not forgotten
when an end is popped.

This model is very powerful, and efficient. In
most cases, procedures do not require their own dic-
tionaries, so no scope changing code needs to be
implemented at procedure entry and exit. When re-
quired, procedures can share names and their values
by pushing an appropriate dictionary. Name search
is always carried out from the top-most dictionary
downward, with the lowest entry always being the
standard system dictionary. This permits private
dictionaries to contain redefinitions of all variables,
functions, and operators. It is possible to save the
current definition of a name before redefining it, just
as TEX programmers often write
\let \oldfoo = \foo
\def \foo {...\oldfoo...}

to augment the action of a macro with additional
code.

The initial definition of PostScript (Level 1) re-
quired dictionaries to be created with a fixed size;
this was later found to be a bad design choice, and
in Level 2 PostScript, dictionaries expand automat-
ically.

Dictionaries appear to offer a facility akin to the
dynamic scoping of some Lisp dialects (e.g. MacLisp
and Emacs Lisp), which Stallman argues [10, p. 311–
312] is more powerful than the lexical scoping of
most other programming languages, including Com-
mon Lisp and Scheme.

I believe that dictionaries could be easily added
to NTS, since the stacking name space mechanism is
already present in TEX to support unnamed braced
groups.

Whether both packages and dictionaries are
needed is debatable. PostScript dictionaries pro-
vide for explicit name qualifications, albeit via the
onerous syntax of begin dictname opname end in-
stead of the more compact dictname.opname used
in packages, but they do not force a name space hier-
archy upon the programmer. I’m inclined to believe
that both would be valuable additions.

3.6 Floating-point arithmetic

In order to guarantee identical operation across all
architectures, Knuth did not make floating-point
arithmetic available in the TEX language.

TEX the program has only one variable of
floating-point type, and it is used only for glue ratio
computations that do not affect line breaking deci-
sions. Some personal computer implementations of
TEX replace this by scaled fixed-point arithmetic,
since such machines often lack floating-point hard-
ware. METAFONT the program has no floating-point
arithmetic whatsoever.

preliminary draft 01 Nov 1993 8:23 preliminary draft 01 Nov 1993 8:23

1006 preliminary draft, 12 Nov 2004 17:27 TUGboat, Volume 0 (2001), No. 0

Except for the glue ratios, TEX does all of
its calculations in 32-bit integer and scaled integer
arithmetic.

Integer counter values range from −231 + 1 to
231 − 1 (−2147483647 to +2147483647).

Dimensions are represented in units of scaled
points (65536 sp = 1 pt), so that they are effectively
the sum of a 15-bit integer and a 16-bit fraction.
However, to allow two dimensions to be added with-
out overflow, the integer part is restricted to 14 bits,
so that dimensions actually range from −230 + 1 sp
to 230 − 1 sp (approximately −16384 pt to +16384
pt).

At the time TEX was first designed in 1977–
1978, there were almost as many floating-point ar-
chitectures as computer architectures, and with the
possible exception of the IBM System/360 main-
frames, no one system was dominant. System/360
floating-point arithmetic has two serious deficien-
cies: hexadecimal normalization leading to wobbling
precision, and truncating, rather than rounding, op-
erations. Thus, there was no obvious candidate
for designing a software emulation of floating-point
arithmetic.

That situation changed in 1980 when a draft
specification of a standard binary floating-point
arithmetic was published by IEEE Task P754. Al-
though final standardization actually did not hap-
pen until 1985 [31], the arithmetic system was imple-
mented in hardware by several vendors, and today
is the dominant system used by virtually all per-
sonal computers and workstations, with more than
150 million having been sold by 1993.

Experience in the numerical computing com-
munity has shown that there are some variations
in quality of implementation that prevent achiev-
ing bit-for-bit identical results in longer computa-
tions; these arise from differences in instruction or-
dering (recall that because of finite precision and
range, floating-point addition and multiplication is
not necessarily associative), and from behavior of
the floating-point implementations near the under-
flow and overflow limits.

However, in the context of NTS, these variations
would not exist, provided that IEEE 754 floating-
point arithmetic were implemented entirely in soft-
ware. This is certainly possible; one excellent ex-
ample is Apple’s SANE (Standard Apple Numeric
Environment) implementation used in those mod-
els of the Apple Macintosh that lack floating-point
hardware. SANE was written by Jerome Coonan,
one of the authors of the IEEE 754 Standard.

It does not take much experience with TEX
arithmetic to rediscover the lesson learned on the

computers of the 1950’s that scaled integer arith-
metic is exceedingly painful to program in, and even
more difficult when double-length products cannot
be produced, and overflow cannot be detected.

Although TEX detects integer overflow in mul-
tiply and divide instructions, it does not do so for
addition. I once reported the following behavior in
a TEX bug report to Don Knuth:
\count0 = 1073741824
\multiply \count0 by 2
! Arithmetic overflow.

\count0 = 1073741824
\advance \count0 by \count0
\showthe \count0
> -2147483648.

His response was that it is an implementation ‘fea-
ture’, rather than a bug, and that overflow checks
are omitted for addition because they happen in a
number of places, and might impact performance.

My personal view is that this behavior is sim-
ply incorrect : getting the wrong answer fast is al-
ways inferior to getting the right answer somewhat
more slowly. In any event, machines today are very
much faster than those at TEX’s birth, and the ex-
tra overhead of overflow checking for addition should
certainly be tolerable.

I believe that NTS needs both an IEEE 754
floating-point package in software (to guarantee
identical results across all architectures, and allow
operation on machines that lack floating-point hard-
ware), and a minimal set of elementary functions
such as those provided in the Fortran language stan-
dards, for which reliable and accurate algorithms
have been published by Cody and Waite [18], and
implemented in freely- and publicly-available code
for Berkeley UNIX.

IEEE 754 support for sticky exception flags,
gradual underflow to denormalized numbers, and for
NaN (Not-a-Number) and Infinity, make it possible
to provide for non-stop computing in the event of
underflow and overflow, without sacrificing the abil-
ity to detect that abnormal conditions might have
occurred during the computation. There is then no
need to add the complexity of exception handling to
the TEX language.

Applications of floating-point arithmetic be-
come apparent as soon as rotated or scaled text,
and graphics, are considered.

The PostScript page description language pro-
vides IEEE 754 arithmetic, although only the 32-bit
version (the Standard actually defines four formats,
but most implementations offer only two or three of

preliminary draft 01 Nov 1993 8:23 preliminary draft 01 Nov 1993 8:23

TUGboat, Volume 0 (2001), No. 0 preliminary draft, 12 Nov 2004 17:27 1007

them). Floating-point arithmetic in PostScript im-
plementations in output devices have been in both
hardware and software. In the case of hardware,
some variations between output devices are there-
fore possible. Certainly any successor to PostScript
will also have IEEE 754 floating-point arithmetic.

3.7 Overflow detection

In Section 3.6 on page 1005, we observed that TEX
does not detect integer overflow on addition or sub-
traction. This should be remedied.

3.8 64-bit arithmetic

The trend in computer architectures of the 1990s
is to move beyond the 32-bit address space limit
first introduced with the DEC VAX architecture in
1978. Today, the MIPS R4000 and DEC Alpha both
provide 64-bit addressing, and other RISC processor
vendors (HP, IBM, and Sun) have announced plans
to do that.

On such architectures, 64-bit arithmetic will of-
ten be cheaper and faster than 32-bit arithmetic. I
believe that designers of NTS might usefully con-
sider the desirability of converting to 64-bit integer
arithmetic. Since TEX arithmetic is always done in
response to the \advance, \multiply, and \divide
operators, or with fixed-point scale factors multiply-
ing dimension registers, the run-time overhead of the
change is expected to be minimal, even when it must
be simulated in software. This might be most con-
veniently done by extending dimension fractions to
32 bits, with a 30-bit integer part; counters would
be pure 64-bit values.

This larger range of integer and scaled fixed-
point arithmetic would drastically reduce the inci-
dence of overflow in intermediate computations, as
well as prepare the way for support of much larger
address spaces. In TEX, overflow occurs in an op-
eration as simple as converting the small dimension
value 3 bp to 3.01125 pt by multiplication by the
factor 7227/7200, and because TEX cannot recover
from overflow, or sometimes, even detect it, it is dif-
ficult to perform even relatively simple scaling op-
erations accurately.

3.9 Absolute page positioning

All computer graphics standards, and PostScript,
have included the notion of an absolute page po-
sition. TEX regrettably does not, on the grounds
that its line-breaking and page-breaking algorithms
can result in text tentatively typeset on one page
being moved forward or backward a page. In some
applications, it is common to require the ability to
typeset material at a fixed page location. This is

only possible in TEX with code embedded in the out-
put routine, at the point where a page is ready for
\shipout to the DVI file. Regrettably, such modifi-
cations may be infeasible if a complex output routine
such as that in LATEX must be dealt with.

NTS should remedy this situation, and I suspect
all that is needed is an additional pass over material
being typeset. That pass would only be necessary
in the event that NTS encountered a command that
required absolute page positioning.

3.10 Expression evaluation

TEX’s COBOL-like arithmetic is painful to use, and
the lack of a general expression parser is a severe de-
ficiency. Although it is possible to write an expres-
sion parser in TEX, as Greene has demonstrated [19],
I believe that NTS would benefit from a standard fa-
cility for the purpose, so that one could write com-
pact and understandable input like this:
\count23 = \expr{27 * \count17 -

(\count12 + \count13) / 32}

The benefits of a powerful expression grammar are
widely appreciated by programmers who have been
exposed to languages like C and C++, which are
particularly rich in this area. NTS designers could
usefully study expression grammars of such lan-
guages, but would do well in a redesign to reduce
their excessive number of operator precedence levels
by requiring explicit parentheses to regulate prece-
dence in complex cases.

3.11 Hooks

In the Lisp family of computer languages, the no-
tion of ‘hooks’ has regularly appeared. In partic-
ular, some Lisp dialects have a general mechanism
for attaching pieces of code (the ‘hooks’) to func-
tion entry and exit. This is also very easy to do in
PostScript. Long experience with TEX, and macro
packages like LATEX, has shown that it would be ex-
tremely useful to have this facility in NTS. In some
cases, it is possible to do this in TEX, with code like
\let \oldcode = \code
\def \code
{%

...entry hook code...
\oldcode
...exit hook code...

}

This is not completely general: there are situa-
tions where it fails because TEX expects a partic-
ular object to occur next in the input stream (e.g.
a box must follow a \setbox command). While a

preliminary draft 01 Nov 1993 8:23 preliminary draft 01 Nov 1993 8:23

1008 preliminary draft, 12 Nov 2004 17:27 TUGboat, Volume 0 (2001), No. 0

TEX wizard can usually recognize the problem ar-
eas, there are enough idiosyncrasies that such useful
techniques are infeasible for most users.

In an interpreted language like TEX, commands
result in procedure calls inside the interpreter. A
proper design of a hook facility could result in an
implementation with no overhead at all when hooks
were not used, and support for efficient use of multi-
ple entry and exit hooks. I envision a syntax some-
thing like this:
\addentryhook{\command}{...hook code...}
\addexithook{\command}{...hook code...}

Such commands could be repeated, each wrapping
one more level of entry and exit hooks around the
previous definition of the command.

It is a matter for further study whether addi-
tional facilities to strip levels of hooks is desirable.
It is possible that grouping would provide sufficient
control, since exiting a group would result in loss of
non-\global hooks added inside the group.

3.12 Low-level input/output primitives

I believe that TEX and its implementation language,
Pascal, as well as most older programming lan-
guages, have a serious flaw in their I/O model in that
they impose an artificial structure that is irrevoca-
bly interposed between the program and the file. A
superior model is provided in the C programming
language, where the fundamental I/O primitives get
and put single characters (the smallest directly ad-
dressable object on most architectures), and then
additional layers of software provide higher-level
structuring of files into records, lines, pages, etc.

NTS should provide low-level I/O primitives,
perhaps named something like \getchar and \put-
char, that are capable of handling all characters
representable in the processor.

Existing TEX I/O based on \read and \write
should of course continue to function identically in
NTS.

3.13 Input and output translation tables

TEX was developed in an environment where the
ASCII character set was widespread. Today, it is
in use on a wide variety of computing equipment,
and particularly in non-English speaking areas of the
world, with a wide variety of character sets. In order
to handle character requirements of other languages,
ASCII, or ISO8859-1, has been extended with nu-
merous ‘code pages’, which are essentially specific
assignments of characters to the upper 128 of a 256-
character table, usually with only minor changes in
the lower 128 characters.

Although the future will likely be in 16-bit and
32-bit character sets (notably, ISO 10646M and its
Unicode subset), the transition to a universal char-
acter set is going to be long and extremely painful.
Throughout much of its life, NTS is going to have to
deal with this, and I believe that it is essential that
the TEX xchr and xord arrays be accessible via TEX
macros. At least one personal computer extension
of TEX has already made this possible.

It is essential that these translation tables can
be changed on-the-fly during TEX execution, possi-
bly many times, not just at startup time.

3.14 More than 9 parameters

Occasionally, I experience the need for more than 9
parameters in TEX macros. Consider construction of
a macro to position four subfigures, each represented
by a file name, a width, and a height: 12 parameters
are needed. While it is always possible to program
around the arbitrary limitation to 9 macro parame-
ters by using tricks like hidden macros that gobble
clumps of the arguments, it is decidedly unclean to
do so.

If NTS lifts this restriction, then a design de-
cision will have to be made to disambiguate cases
where a digit follows a parameter name in a macro
body, such as {#12}, which in TEX means argument
1 followed by the digit 2, but in NTS, would mean
argument 12.

3.15 Arrays

It has occasionally been observed that TEX’s \cs-
name . . . \endcsname provides a way to implement
sparse arrays in TEX, much like associative arrays or
tables in languages like awk [3], perl, icon [20], and
snobol. Such techniques rely on the use of efficient
name lookup in TEX, which, like the other languages
mentioned, uses hashing to achieve O(1) complexity,
independent of table size.

In TEX, one can provide more familiar array
syntax while hiding the implementation by using a
macro definition like
\def \table [#1]%
{%

\csname \@table [#1]\endcsname
}

Unfortunately, this addresses only part of the prob-
lem: there is still no way to iterate over the elements
of the array, like one can in awk with
for (var in table)
{
. . . loop body. . .
}

preliminary draft 01 Nov 1993 8:23 preliminary draft 01 Nov 1993 8:23

TUGboat, Volume 0 (2001), No. 0 preliminary draft, 12 Nov 2004 17:27 1009

which assigns the next ‘subscript’ of the array ta-
ble to the variable var for the duration of the next
iteration of the loop body. The assignments of sub-
script values happen in no particular order, a conse-
quence of the underlying hash table implementation.
In most cases, this does not matter. When a counted
loop is required for ascending integer subscripts, a
more conventional for loop syntax is available.

awk also provides a subscript existence test with
the syntax
if (var in table)

Extensive experience with associative arrays
in those languages that support them has demon-
strated their enormous value, particularly in string
processing applications, which is partly the domain
of TEX and NTS.

It seems to me that such a facility could be
added quite cleanly to NTS, and would be found to
be of significant value.

3.16 Register limits

Programmers of large TEX macro packages regularly
hit the limit of 256 registers (or 16 font families, or
256-character fonts, and maybe even 256 hyphen-
ation tables). These magic numbers are purely a
manifestation of an implementation detail in TEX
that really should be hidden from the user. NTS
should remove all such limits, by allowing them to
expand arbitrarily using any integer indexes that are
representable in \count registers. Ideally, the im-
plementation would use hashing techniques so as to
avoid the need for sequential assignment of registers,
but since \newcount, \newdimen, and friends are al-
ready in wide use in TEX macro packages, an imple-
mentation that allocated table memory assuming all
referenced indexes were in use would likely not be
overly restrictive, and would allow direct indexing
of internal arrays.

TEX currently rejects an attempt to refer to a
register (family, font character, . . .) number which
is out of range, with error messages like
\count256
! Bad register code (256).

\char256
! Bad character code (256).

so extending the range in NTS should not introduce
any compatibility problems.

3.17 String primitives

Although TEX processes text in order to typeset it,
it is astonishingly poor in facilities for processing
text, and it is surprisingly difficult, and inefficient,

to implement such facilities in TEX macros. Even
Fortran 77, which predates TEX, has standard func-
tions for searching for a substring in a string, for con-
verting between characters and ordinal values, for
concatenation, and for comparison (both in the lo-
cal character set, and in ASCII). PL/1, which dates
from the mid 1960s, has even more string primitives.
The widely-used C language offers an even richer
set which is clearly documented in an international
standard [6] and in a book [34] which contains sam-
ple implementations.

NTS would be well advised to incorporate a rich
set of string primitives with at least of power and fa-
cility of those in the C programming language. Of
course, to guarantee identical operation across all
platforms, the implementation of NTS would have to
provide its own code for each of these string primi-
tives.

3.18 Regular expressions

In the UNIX world, several utilities offer regular-
expression pattern matching, and such matching has
been a fundamental part of compiler lexical analysis
since the 1970s (e.g. see [4] for a detailed theoretical
treatment, or UNIX manual pages for such common
utilities as awk, ed, grep, and sed). Implementa-
tions within Emacs-like text editors are available for
all major operating systems.

Sadly, the lack of standard library support for
this facility led to multiple implementations that dif-
fer in small details, and regrettably, the standard-
ization of the C programming language [6] did not
remedy that situation. However, POSIX [29, 49] and
X/Open [47] have made progress in standardizing
the treatment of regular expressions, and extending
them to support international character sets. Prod-
ucts of the Free Software Foundation (FSF) provide
portable, and well-tested, implementations of such
code.

The FSF regex package is a highly-optimized
implementation that builds on two decades of re-
search in string matching, and it requires several
thousand lines of C code. It therefore seems un-
reasonable, if not infeasible, to implement such a
package in TEX macros that would likely take even
more code, and be exceedingly slow in execution.

NTS support for a regular-expression pattern-
matching library that conforms to international
standards would be an extremely valuable extension
to TEX’s capabilities. Although the implementation
of such code is complex, the user interface is surpris-
ingly simple: it can be provided in just four basic
primitives in the POSIX specification, and only two
of those are required for most applications.

preliminary draft 01 Nov 1993 8:23 preliminary draft 01 Nov 1993 8:23

1010 preliminary draft, 12 Nov 2004 17:27 TUGboat, Volume 0 (2001), No. 0

3.19 16-bit and 32-bit character sets and
fonts

I commented earlier in Section 3.13 on page 1008
about the 32-bit ISO 10646M character set, and
its Unicode 16-bit subset. Already, two operating
systems exist which use Unicode: AT&T’s Plan 9
(a descendant of UNIX), and Microsoft’s Windows
NT. Inasmuch as several tens of millions of larger
personal computers are potential hosts for Windows
NT, its success is a virtual certainty.

It is therefore imperative that NTS be able to
support at least 16-bit characters, and possibly, 32-
bit characters. Plaice [33] has already demonstrated
that the TEX source code can be extended to support
such large character sets.

Considerable thought will need to be given to
the preservation of document portability once much
larger character sets come into use.

3.20 Switching between TEX and NTS

Philip Taylor’s TUG’93 presentation [40] of the cur-
rent status of NTS envisaged that the choice between
TEX and NTS would be selected only at job startup
time, such as by a special command-line option. I
believe that such a restriction would be a mistake:
even if NTS is successful, there will be a long pe-
riod in which TEX and NTS must coexist, and con-
sequently, users will find themselves in the position
of requiring multiple macro packages, some written
in TEX, and some in NTS. It is therefore imperative
that it be possible to switch between TEX and NTS
on-the-fly.

The major implication of this is that in those
few circumstances where the interpretation of a com-
mand depends on whether it is NTS or TEX, NTS
the program must be able to interpret the com-
mand accordingly. This then implies that all user-
defined macros, and built-in commands, must in-
ternally carry a Boolean tag that identifies which
interpretation is required. Of course, if it is possible
by careful design to avoid all such conflicts, then the
tag will be unnecessary.

3.21 Memory allocation and deallocation

TEX offers no user control over the allocation and
deallocation of memory. As in Lisp systems, TEX
memory management is automatic. The \newxxx
commands offer the user a way to create new objects
of various types, but no way to subsequently reuse
them. With serious limitations on the number of
registers, it is common for large macro packages to
need a facility for such reuse. Perhaps NTS could

provide corresponding \freexxx commands to allow
such reuse.

Of course, if my suggestions in Section 3.16 on
page 1009 are followed, limitations on the number of
registers will be removed, and the need for \freexxx
commands may be reduced.

It may be possible to implement some or all of
this feature directly in macros. For example, Spivak
provided \purge and \unpurge in LAMS-TEX [37]
to recover memory used by TEX macro packages.
The general idea is that a \purge{foo} command
reads in a file, foo.tox, in which every macro from
foo.tex is \let equal to \undefined, thereby al-
lowing TEX to reclaim memory. A subsequent \un-
purge{foo} is equivalent to an \input command to
reread the original macro package.

3.22 Function \return

Both Pascal and TEX lack a return statement to
exit prematurely from a block of code; the result is
that sometimes convoluted programming is needed
to avoid executing following code.

It seems to me that NTS would be advised
to incorporate a \return macro; after all, TEX
supports \endinput to exit prematurely from the
reading of a file. Of course, some programming
care would needed for the use of \return, in those
cases where an apparently-argumentless macro in-
vokes other macros that consume arguments from
the input stream; premature return could leave un-
processed arguments in the input. In most cases,
however, \return should pose no problems.

3.23 Group \exit

Just as a \return is desirable to exit from the body
of a macro, so is a facility for exiting from a group.
An \exitgroup macro should therefore be a com-
panion addition to NTS.

3.24 Characters with property lists

When a character is typeset on a page, it clearly has
certain attributes, or properties. These include page
position, font name, font position, color, dimensions,
category code, and mode (math, horizontal, vertical,
. . .). Some of these can be changed, and some can-
not (notably, category codes). Of those that can be
changed, such as dimensions, the changes may be lo-
cal to a group, or they may be global. TEX does not
supply a uniform method of accessing these proper-
ties.

In Lisp systems, objects are created with prop-
erty lists that can be accessed in a standard manner.
By analogy with computer files, one might imagine

preliminary draft 01 Nov 1993 8:23 preliminary draft 01 Nov 1993 8:23

TUGboat, Volume 0 (2001), No. 0 preliminary draft, 12 Nov 2004 17:27 1011

that properties might also have access attributes,
such as read-only.

It seems to me that NTS might usefully present
a property-list model of characters to the macro pro-
grammer, and also eliminate the restriction that cat-
egory codes cannot be changed.

3.25 Dynamic loading and unloading of
hyphenation tables

Discussions on TEX-related electronic mail lists have
clearly indicated the need to support multiple lan-
guages, and therefore hyphenation tables, in some
applications. Regrettably, TEX allows these to be
loaded only in INITEX. That design mistake should
definitely be remedied in NTS. It should be possible
to load, and unload, hyphenation tables on-the-fly.

3.26 Memory \dump/\restore

INITEX provides a \dump command to dump the
state of TEX’s memory into a special file, called a for-
mat (.fmt) file, and this can be subsequently loaded
by VIRTEX at startup time.

It seems to me that this model is overly restric-
tive, and that uses could readily be found for a gen-
eral \dump/\restore facility that could be invoked
at any time in NTS. Of course, thought would have
to be given to exactly what is to be dumped: should
it just be macro definitions, or should it also include
the contents of registers and the current page box
list?

3.27 Font scaling and other font attributes

Vulis’ Vector TEX [44] has provided a prototype for
how scalable fonts might be supported by NTS, as I
believe they must.

On the surface, it would appear that all that
is required is an additional \fontdimen that would
hold a scaling factor for the current font, plus a font
property that indicates whether the font is scalable
or not. It should be possible to reset it with simple
syntax like
\fontscale{1200} A
\fontscale{1400} B
\fontscale{1600} C
\fontscale{1000} D

Besides scale, Vector TEX implements a number
of other useful font attributes, including aspect ra-
tio, slant, outline, shadow, fillpattern, and smallcaps.
NTS would do well to incorporate such facilities.

3.28 Font rotation

At the time of TEX’s birth, phototypesetters were
only capable of setting text horizontally or verti-

cally. With the advent of more powerful page de-
scription languages, notably, PostScript, this restric-
tion has been eliminated, and text can be typeset
along slanted lines, and even along arbitrary curved
paths. Although Hoenig has demonstrated [21, 22]
that TEX can do this too if it collaborates with
METAFONT, it is most certainly not easy to do this.

With PostScript output devices, and suitable
DVI driver support, it is possible with TEX at
present to employ \specials to obtain rotated text.

Rotated characters are needed in many appli-
cations, including advertising, and graph labelling.
NTS should at the very least provide for the setting
of text along lines of arbitrary orientation, so as to
standardize the facility.

3.29 Fonts and rules with grey scale, color,
and pattern fill

Phototypesetting, and earlier printing technology,
did not make it easy to print with more than just
black and white. With the advent of color output de-
vices, and page description languages like PostScript
to support them, that situation no longer holds.

It should be a fairly simple extension of TEX’s
rule mechanism to augment width, height, and depth
attributes with additional properties, such as grey
scale, color, and pattern fill. Almost any commonly-
used output device today could easily support grey
scale and patterns, and color output capabilities will
clearly become widespread in the next few years.

Aside from Vulis’ Vector TEX [44] which ad-
dresses grey scale and pattern fill, there has been
some work already with color in TEX via \specials
for PostScript DVI drivers [16, 28].

3.30 Line cap styles for rules

TEX’s rules are black-filled rectangles with edges
aligned with the coordinate axes. PostScript has a
setlinecap operator [2, p. 506] that allows a choice
of butt caps (TEX’s choice), round caps, and pro-
jecting square caps, each of which has useful applica-
tions. Round caps cannot be satisfactorily provided
with TEX, because TEX has no filled arc primitive.
Projecting square caps can be obtained in TEX by
manually adjusting the position and length of rules,
but it is decidedly inconvenient to do so.

NTS should provide each of these line cap styles.

3.31 Clipping

Graphics standards and page description languages
provide for clipping : the removal, or prevention of
placement, of material outside a specified region.

preliminary draft 01 Nov 1993 8:23 preliminary draft 01 Nov 1993 8:23

1012 preliminary draft, 12 Nov 2004 17:27 TUGboat, Volume 0 (2001), No. 0

While only rectangular clipping regions are sup-
ported in most graphics packages, PostScript sup-
ports the powerful notion of a clipping path that can
be made up of both straight and curved lines, pos-
sibly forming disconnected regions. Thus, in Post-
Script it is possible to use the outline of the letter
‘A’ to prepare a clipping path over which patterns
can be drawn to obtained a pattern-filled letter.

At least for rectangular regions, it would seem
straightforward to provide for the setting of text in
a rectangular box of specified size, with omission
of characters that lie partially, or entirely, outside
the box. Suitable commands might be \cliphbox,
\clipvbox, \clipvtop, and \clipvcenter, or per-
haps better, a simple \clip command that, issued
inside any TEX box primitive, would cause material
outside the box to be discarded.

Some thought would need to be given to what
should be done with \llap and \rlap material,
which TEX provides to allow material to extend out-
side its natural enclosing box.

3.32 Job file extension

TEX provides \jobname to record the base name of
its first input file, but alas, offers no way to override
the assumption of a default .tex file extension.

In many operating systems, file extensions are
used as conventions to indicate something about the
contents of files, and other software can take use
these to advantage. For example, on UNIX, some
compilers will accept file extensions for other lan-
guages, and automatically invoke the appropriate
language-specific compiler. The make utility, possi-
bly the greatest software tool ever written, uses file
extensions with file time stamps to identify rules to
apply to bring a file up-to-date. Point-and-shoot op-
erations in window systems launch application pro-
grams to process the selected file(s), using the file
extension (or on the Apple Macintosh, an attribute
recorded in the file’s resource fork) to select the ap-
plication program.

I have long followed the convention of using
macro-package specific file extensions for TEX files:
.tex for Plain TEX, .ltx for LATEX, .stx for
SLiTEX, .atx for AMS-TEX, and .lam for LAMS-
TEX. NTS should provide a \jobextension or
\jobtype macro to hold this file extension. It would
normally be set by a major macro package, and then
used in place of the current hard-coded .tex exten-
sion by TEX when it needed to read a file for which
the extension is omitted. If no such file is found,
then NTS should fall back on the old .tex default
and try it too.

I surmise that addition of this feature to TEX
could be done in fewer than ten lines of additional
code.

3.33 Usage profiling

Programmers of large applications often want to
tune code to increase performance. Some operating
systems, notably UNIX, provide several profilers for
this purpose. Execution profiles of CPU time per
function or subroutine, or per line, and execution
counts per line, are essential for reliable tuning.

TEX provides no such facility at present. NTS
should at the very least offer a CPU timing facility,
perhaps as a simple primitive that returns the CPU
execution time since job beginning in suitable small
units, either milliseconds, or microseconds. Differ-
encing two samples of a \cputime primitive would
provide the execution time of a block of code, which
is a minimal requirement for measuring code effi-
ciency.

Every computer system has a timer of some
sort, and all common operating systems, and some
programming languages, make the time accessible
to programs, though regrettably without any stan-
dard units of measurement or calling interface. I
believe that a very small amount of code added to
the Web source of NTS, plus small system-dependent
alterations in a change file, could provide the needed
facility.

TEX provides the \tracingstats option to re-
quest the dumping of memory usage statistics to
the log file. Regrettably, these are not available to
the programmer. NTS should supply memory usage
statistics as read-only values that can be sampled at
any time.

3.34 Word boundary markers

Knuth envisaged that TEX’s DVI file output would
be used only by DVI drivers to prepare page images.
He therefore omitted from the DVI file an impor-
tant piece of information that is required in other
contexts, namely, the marking of word boundaries.

One of the reasons that Berry and coworkers
found that the older troff was preferable to TEX for
multidirectional typesetting and high-quality Arabic
ligaturing [11, 38] is the presence of word boundary
marks in troff’s output.

I believe that NTS should remedy this defi-
ciency.

preliminary draft 01 Nov 1993 8:23 preliminary draft 01 Nov 1993 8:23

TUGboat, Volume 0 (2001), No. 0 preliminary draft, 12 Nov 2004 17:27 1013

3.35 Elimination of INITEX

The division of TEX into two separate, but simi-
lar, programs, INITEX and VIRTEX, was done be-
cause of memory limitations on computers of the
time. This has three unfortunate side effects:
• Loading of hyphenation patterns and dumping

of format files can only be done in INITEX.
• Novice users are confused by the existence of

two separate programs.
• The trip torture test is only applied to INITEX,

and not to VIRTEX, yet it is the latter that is
the program that end users run. I have encoun-
tered at least one system on which the trip
test passed, and two weeks later, a user re-
ported a core dump in (VIR)TEX. Compilers
too are programs written by humans, and cer-
tainly contain bugs; successful execution of one
program does not mean that a related one will
be compiled correctly.
I therefore strongly recommend that NTS elimi-

nate the INI and VIR dichotomy, and return to a sin-
gle executable program that can be validated with
a torture test suite. I have been told that TEXtures
for the Apple Macintosh, from Blue Sky Research,
has already done this.

4 LATEX: the future

Work is well under way for the preparation of a new
implementation of LATEX, to be called version 3.0,
and documented in several books to be published at
the time of its release.

Nevertheless, in conjunction with recommenda-
tions for the future of TEX, I thought it would be
worthwhile to set down some advice for LATEX de-
velopment too, even though most of these will not
require the new features of NTS to implement.

4.1 LATEX: global vs. local counters and
lengths

It is a curious situation that LATEX’s \addtocounter
expands to a \global \advance, while the similar
\addtolength is a bare (local) \advance. While
the LATEX book [27] does not expose the distinction
between global and non-global assignments, the dis-
parity between these two commands can lead to sur-
prises.

It seems to me that both should be local, or
both global.

4.2 LATEX: sample input documents

Perhaps the most serious deficiency of the LATEX
User’s Guide and Reference Manual [27] is that
nowhere does it illustrate a minimal input file for

LATEX. Consequently, one has to read the book very
carefully to divine how to prepare an input file to
typeset even a single line of text.

Buerger’s book [15], which has received criti-
cism on other grounds, at least presents the user
with sample input for a short block of text, a frag-
ment of a scientific article, a recipe, a table, and a
few other simple documents.

Borde’s books [13, 14] on plain TEX contain
nothing but samples of input and output for a wide
variety of applications, augmented with discussion
of the features of TEX introduced in each example.

The cookbook approach has much to be said for
it, and a revised edition of the LATEX User’s Guide
and Reference Manual would be improved by the
introduction of several examples.

4.3 LATEX: minor edit numbers

A great many copies of TEX and LATEX exist on com-
puters around the world. The job of site adminis-
trators can be made easier by incorporation of clear
edit histories in files, together with an edit number
and time stamp that are displayed when programs
are run.

Although the LATEX files contain a revision date
and major version number, they lack the minor edit
number that is traditional in the software industry
to characterize the revision history. One has to pe-
ruse the lerrata.tex file to try to figure out what
has changed, but even there, the changes are not
date stamped or numbered.

Please, let us have clear revision histories and
minor edit numbers in future releases of TEXware.

4.4 LATEX: distinct option and style file
extensions

In the current LATEX, minor option and major style
file extensions are identical: .sty. This makes it
impossible for a user to scan a directory of such files
and determine which are the major styles, and which
are the options.

I urge the LATEX development team to adopt
a separate extension, .opt, for minor option files,
falling back to the old .sty extension only if that
one fails to identify an existing file.

4.5 LATEX: all options have corresponding
file

Some LATEX options do not have corresponding style
files, but instead are implemented as macros deeply
embedded in major style files. This makes it very
difficult to enumerate the document style options
that are available. Such enumeration is required for

preliminary draft 01 Nov 1993 8:23 preliminary draft 01 Nov 1993 8:23

1014 preliminary draft, 12 Nov 2004 17:27 TUGboat, Volume 0 (2001), No. 0

completion lists in intelligent editors, and for prepa-
ration of catalogues of available styles and options.

Please, let us have one file for each minor doc-
ument style option, even if for certain options, such
as point size, it consists of nothing but comments.

4.6 LATEX: paper names and page
dimensions

Although LATEX markup encourages the author or
typist to think in terms of document parts like sec-
tions, figures and tables, bibliographies, indexes,
and so on, rather than low-level details of the fi-
nal appearance, the fact is that many, if not most,
documents must be prepared with some knowledge
of their final form. This is particularly true for wide,
or long, tabular material, but is also important when
the final touches of elimination of overfull and un-
derfull boxes are being made, through addition of
discretionary hyphens, minor rewording, and rarely,
alteration of TEX parameters that govern line break-
ing.

I believe that LATEX and other TEX-based docu-
ment formatting systems need to offer style options
that correspond to standard paper names, with TEX
macros for accessing the paper dimensions. Once the
page dimensions are available, it is relatively easy
to program styles to make adjustments to \text-
height and \textwidth, and possibly assorted in-
dentation parameters, based on the page dimen-
sions.

My lptops utility for turning line printer text
files into PostScript recognizes numerous standard
paper sizes, and provides easy means to augment
the list by local customizations; see Table 1 for the
list.

4.7 LATEX: Font scaling in picture mode

When picture-mode drawings are resized by ad-
justment of \unitlength, text in the picture does
not resize accordingly. If support for scaled fonts
is provided in NTS as recommended in Section 3.27
on page 1011, then LATEX picture mode should be
enhanced to support them.

4.8 LATEX: Additional Float placement
options

Float placement in LATEX 2.09 is a perennial prob-
lem: figures and tables often float too far away
(sometimes dozens of pages) from their point of ref-
erence, and there are insufficient placement options.

For the first of these, I believe that the place-
ment algorithm must be revised to ensure that the
float never goes more than a page or two away from
where it is issued, perhaps by introduction of an

exponentially-increasing penalty. There should also
be a \clearfloat command that can be used to
force immediate output of all pending floats. This
functionality is clearly already embedded in \clear-
page and \cleardoublepage, but has the nasty side
effect of also forcing a page break.

For the second, more precise placement specifi-
cation should be possible, with these suggested let-
ters to augment the existing t (top), b (bottom), h
(here), p (separate page containing only floats):
x exactly here, even if this results in overfull or

underfull pages;
e next even-numbered page, with placement fur-

ther modified by the existing t, b, h, and p;
o next odd-numbered page, with placement fur-

ther modified by the existing t, b, h, and p;
f guaranteed to follow the point of issue, with

placement further modified by the existing t,
b, h, and p.
The last of these is required to cope with style

requirements that insist a float may not precede its
point of reference; thus, t in such a case should select
top of the next following page.

4.9 LATEX: \path macro

LATEX’s \verb macro for typesetting of short verba-
tim texts in typewriter font is very convenient. It
has one limitation, however: it does not permit a
line break in the text.

In computer documentation, it is conventional
to represent file names, host names, electronic mail
addresses, and sometimes, program variable names,
in a typewriter font. Many these tend to be rather
long, and it is rather tedious to have to manually
insert discretionary hyphens and control sequences
for special characters in text like
Friesland@rz.informatik.uni-hamburg.dbp.de

Furthermore, discretionary hyphens are undesirable,
because it then becomes impossible to tell if a ter-
minal hyphen was part of the original name, or not.
Instead, one should use the equivalent of a TEX
\penalty0 to allow a hyphenless line break.

What is needed is a control sequence that works
like \verb, but allows line breaks at certain user-
specifiable characters, without supplying a hyphen.
I prepared two prototypes of such a macro, but my
TEXpertise was insufficient to produce a truly satis-
factory solution, so I posed the problem to a lead-
ing TEXpert, Philip Taylor, and he very kindly took
up the gauntlet and produced a very workable, and
well-documented, implementation of \path, which
has been freely available since the fall of 1991 in
TEX archives in the file path.sty. \path can be
used with any TEX-based macro package, not just

preliminary draft 01 Nov 1993 8:23 preliminary draft 01 Nov 1993 8:23

TUGboat, Volume 0 (2001), No. 0 preliminary draft, 12 Nov 2004 17:27 1015

Table 1: Common paper names and sizes
Name Width Height Name Width Height

A 8.5in 11in A3L 420mm 297mm
B 11in 17in A4L 297mm 210mm
C 17in 22in A5L 210mm 148mm
D 22in 34in A6L 148mm 105mm
E 34in 44in A7L 105mm 74mm
Computer-1411 14in 11in A8L 74mm 52mm
Legal 8.5in 13in A9L 52mm 37mm
Letter 8.5in 11in A10L 37mm 26mm
US-Legal 8.5in 14in B0 1000mm 1414mm
A-L 11in 8.5in B1 707mm 1000mm
Computer-1411-L 11in 14in B2 500mm 707mm
Legal-L 13in 8.5in B3 353mm 500mm
Letter-L 11in 8.5in B4 250mm 353mm
US-Legal-L 14in 8.5in B5 176mm 250mm
COM10 4.1in 9.5in B6 125mm 176mm
DL 110mm 220mm B0L 1414mm 1000mm
Executive 7.25in 10.5in B1L 1000mm 707mm
Monarch 3.9in 7.5in B2L 707mm 500mm
A4Small 210mm 297mm B3L 500mm 353mm
Ledger 11in 17in B4L 353mm 250mm
LetterSmall 8.5in 11in B5L 250mm 176mm
Note 8.5in 11in B6L 176mm 125mm
A0 841mm 1189mm C0 1294mm 916mm
A1 594mm 841mm C1 916mm 647mm
A2 420mm 594mm C2 647mm 458mm
A3 297mm 420mm C3 458mm 323mm
A4 210mm 297mm C4 323mm 229mm
A5 148mm 210mm C5 229mm 161mm
A6 105mm 148mm C6 161mm 114mm
A7 74mm 105mm Octavo 5in 8in
A8 52mm 74mm Sixmo 6.5in 8in
A9 37mm 52mm Quarto 8in 10in
A10 26mm 37mm Foolscap 8.5in 13in
A0L 1189mm 841mm Government-legal 8.5in 13in
A1L 841mm 594mm Folio 8.3in 13in
A2L 594mm 420mm

LATEX. The characters after which line breaks are
permitted can be set by the \discretionaries with
the same syntax of \path and \verb; the default
setting is equivalent to

\discretionaries|~!@$%^&*()_+‘-=#{"}[]:;’<>,.?\/|

For electronic mail addresses, a user might elect to
change it to
\discretionaries+@%!.+

Provision is even made for using backslash as an
argument delimiter, though I have not yet required
this feature.

After two years of frequent use of \path, I am
convinced of its utility and wide application, and
I would very much like to see it incorporated as a
standard feature in a new version of LATEX.

References

[1] Robert A. Adams. Problems on the
TEX/PostScript/graphics interface. TUGBoat,
11(3):403–408, September 1990.

[2] Adobe Systems Incorporated. PostScript
Language Reference Manual. Addison-Wesley,
Reading, MA, USA, second edition, 1990.
ISBN 0-201-18127-4.

[3] Alfred V. Aho, Brian W. Kernighan, and
Peter J. Weinberger. The AWK Programming
Language. Addison-Wesley, Reading, MA,
USA, 1988. ISBN 0-201-07981-X.

[4] Alfred V. Aho, Ravi Sethi, and Jeffrey D.
Ullman. Compilers—Principles, Techniques,

preliminary draft 01 Nov 1993 8:23 preliminary draft 01 Nov 1993 8:23

1016 preliminary draft, 12 Nov 2004 17:27 TUGboat, Volume 0 (2001), No. 0

and Tools. Addison-Wesley, Reading, MA,
USA, 1986. ISBN 0-201-10088-6.

[5] American National Standards Institute,
1430 Broadway, New York, NY 10018, USA.
Military Standard Ada Programming
Language, February 17 1983. Also
MIL-STD-1815A.

[6] American National Standards Institute,
1430 Broadway, New York, NY 10018, USA.
American National Standard Programming
Language C, ANSI X3.159-1989, December 14
1989.

[7] American National Standards Institute,
1430 Broadway, New York, NY 10018, USA.
Draft Proposed American National Standard
Programming Language Fortran Extended
X3.198–199x, September 24 1990.

[8] Graham Asher. Inside Type & Set. TUGBoat,
13(1):13–22, April 1992.

[9] Michael Barr. TEX wish list. TUGBoat, 13(2):
223–226, July 1992.

[10] David R. Barstow, Howard E. Shrobe, and
Erik Sandewall. Interactive Programming
Environments. McGraw-Hill, New York, NY,
USA, 1984. ISBN 0-07-003885-6. US$34.95.

[11] Zeev Becker and Daniel Berry. triroff, an
adaptation of the device-independent troff
for formatting tri-directional text. Electronic
Publishing—Origination, Dissemination, and
Design, 2(3):119–142, October 1989.

[12] Nelson H. F. Beebe. Comments on the future
of TEX and METAFONT. TUGBoat, 11(4):
490–494, November 1990.

[13] Arvind Borde. TEX by Example. Academic
Press, New York, NY, USA, 1992. ISBN
0-12-117650-9.

[14] Arvind Borde. Mathematical TEX by Example.
Academic Press, New York, NY, USA, 1993.
ISBN 0-12-117645-2. xii + 352 pp.

[15] David J. Buerger. LaTEX for Engineers and
Scientists. McGraw-Hill, New York, NY,
USA, 1990. ISBN 0-07-008845-4.

[16] Ch. Cérin. Vers la construction de macros
de mise en couleur pour TEX. Cahiers
GUTenberg, 10-11:197–208, septembre 1991.

[17] Malcolm Clark. Changing TEX? TUGBoat,
13(2):133–134, July 1992.

[18] William J. Cody, Jr. and William Waite.
Software Manual for the Elementary
Functions. Prentice-Hall, Englewood Cliffs,
NJ 07632, USA, 1980. ISBN 0-13-822064-6.

[19] Andrew Marc Greene. BASIX: An interpreter
written in TEX. TUGBoat, 11(3):381–392,
September 1990.

[20] Ralph E. Griswold and Madge T. Griswold.
The Icon Programming Language.
Prentice-Hall, Englewood Cliffs, NJ
07632, USA, second edition, 1990. ISBN
0-13-447889-4. xv + 367 pp.

[21] Alan Hoenig. When TEX and METAFONT
talk: Typesetting on curved paths and other
special effects. TUGBoat, 12(3+4):554–557,
November 1991.

[22] Alan Hoenig. When TEX and METAFONT
work together. In Zlatuška [48], pages 1–19.
ISBN 80-210-0480-0.

[23] History of Programming Languages, volume ??
ACM SIGPLAN Notices, 19??

[24] History of Programming Languages: II,
volume 28. ACM SIGPLAN Notices, March
1993. To be published by ACM Press, 1994.

[25] Donald Knuth and Pierre MacKay. Mixing
right-to-left texts with left-to-right texts.
TUGBoat, 8(1):14, April 1987.

[26] Donald E. Knuth. The future of TEX andMETAFONT. TUGBoat, 11(4):489, November
1990.

[27] Leslie Lamport. LaTEX—A Document
Preparation System—User’s Guide and
Reference Manual. Addison-Wesley, Reading,
MA, USA, 1985. ISBN 0-201-15790-X.

[28] Daniel Levin. A solution to the color
separation problem. TUGBoat, 13(2):150–155,
July 1992.

[29] Donald A. Lewine. POSIX programmer’s
guide: writing portable UNIX programs with
the POSIX.1 standard. O’Reilly & Associates,
Inc., 981 Chestnut Street, Newton, MA 02164,
USA, 1991. ISBN 0-937175-73-0. LCCN
QA76.76.O63 L487 1991b.

[30] Frank Mittelbach. E-TEX: Guidelines for
future TEX. TUGBoat, 11(3):337–345,
September 1990.

[31] IEEE Task P754. ANSI/IEEE 754-1985,
Standard for Binary Floating-Point
Arithmetic. IEEE, New York, August
12 1985. A preliminary draft was published
in the January 1980 issue of IEEE Computer,
together with several companion articles.
Available from the IEEE Service Center,
Piscataway, NJ, USA.

[32] David A. Patterson and John L. Hennessy.
Computer Architecture—A Quantitative

preliminary draft 01 Nov 1993 8:23 preliminary draft 01 Nov 1993 8:23

TUGboat, Volume 0 (2001), No. 0 preliminary draft, 12 Nov 2004 17:27 1017

Approach. Morgan Kaufmann Publishers,
Los Altos, CA 94022, USA, 1990. ISBN
1-55860-069-8.

[33] John Plaice. Language-dependent ligatures.
TUGBoat, 14(2):xxx, October 1993.

[34] P. J. Plauger. The Standard C Library.
Prentice-Hall, Englewood Cliffs, NJ 07632,
USA, 1992. ISBN 0-13-838012-0.

[35] T. V. Raman. An audio view of (La)TEX
documents. TUGBoat, 13(3):372–379, October
1992.

[36] Luigi Semenzato and Edward Wang. A
text processing language should be first a
programming language. TUGBoat, 12(3+4):
434–441, November 1991.

[37] Michael D. Spivak. LAMS-TEX, The
Synthesis. The TEXplorators Corporation,
3701 W. Alabama, Suite 450-273, Houston,
TX 77027, USA, 1990.

[38] Johny Srouji and Daniel Berry. Arabic
formatting with ditroff/ffortid. Electronic
Publishing—Origination, Dissemination, and
Design, 5(4):163–208, December 1992.

[39] Philip Taylor. TEX: The next generation.
TUGBoat, 13(2):138, July 1992.

[40] Philip Taylor. Nts: The future of TEX?
TUGBoat, 14(2):xxx, October 1993.

[41] Phillip Taylor. The future of TEX. In Zlatuška
[48], pages 235–254. ISBN 80-210-0480-0.

[42] Michael Vulis. VTEX enhancements to the
TEX language. TUGBoat, 11(3):429–434,
September 1990.

[43] Michael Vulis. Should TEX be extended?
TUGBoat, 12(3+4):442–447, November 1991.

[44] Michael Vulis. Modern TEX and its
Applications. CRC Publishers, 2000 Corporate
Blvd., Boca Raton, FL 33431, USA, 1992.
ISBN 0-8493-4431-X. 275 pp. US$32.95.

[45] Richard Wexelblat (ed.). History of
Programming Languages. Academic
Press, New York, NY, USA, 1983. ISBN
0-12-745040-8. 758 pp. US$61.00.

[46] Niklaus Wirth. Programming in Modula-2.
Springer-Verlag, Berlin, Germany /
Heidelberg, Germany / London, England /
etc., second edition, 1983. ISBN
0-387-12206-0.

[47] X/Open Company, Ltd. X/Open Portability
Guide, XSI Commands and Utilities,
volume 1. Prentice-Hall, Englewood Cliffs, NJ
07632, USA, 1989. ISBN 0-13-685835-X.

[48] Jǐŕı Zlatuška, editor. EuroTEX ’92:
Proceedings of the 7th European TEX
Conference. Masarykova University, Prague,
Czechoslovakia, 1992. ISBN 80-210-0480-0.

[49] Fred Zlotnick. The POSIX.1 standard: a
programmer’s guide. Benjamin/Cummings
Pub. Co., Redwood City, CA, USA, 1991.
ISBN 0-8053-9605-5.

� Nelson H. F. Beebe
Center for Scientific Computing
Department of Mathematics
University of Utah
Salt Lake City, UT 84112
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
Internet: beebe@math.utah.edu

